Search results for "BASAL"

showing 10 items of 920 documents

Parasite–copepod interactions in Svalbard: diversity, host specificity, and seasonal patterns

2022

AbstractCopepods of the genera Calanus and Pseudocalanus are important components of Arctic marine ecosystems. Despite the key roles of these zooplankters, little is known about the organisms they interact with most intimately, their parasites and symbionts. We applied metabarcode sequencing to uncover eukaryotic parasites present within these two copepod genera from three areas around the high Arctic archipelago of Svalbard. Ten distinct parasite groups were observed: four different Apostome ciliates, four different dinoflagellates (Chytriodinium sp., Ellobiopsis sp., Thalassomyces sp., and Hematodinium sp.), a Paradinium sp., and a trematode. Apostome ciliates closely related to Pseudocol…

/dk/atira/pure/sustainabledevelopmentgoals/life_below_waterPseudocalanus spp.ArcticCalanus glacialisfungiMetabarcodingVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470ParasitesSDG 14 - Life Below WaterGeneral Agricultural and Biological Sciences
researchProduct

Understanding the SO 2 degassing budget of Mt Etna’s paroxysms: First clues from the december 2015 sequence

2019

The persistent open-vent activity of basaltic volcanoes is periodically interrupted by spectacular but hazardous paroxysmal explosions. The rapid transition from quiescence to explosive eruption poses a significant challenge for volcanic hazard assessment and mitigation, and improving our understanding of the processes that trigger these paroxysmal events is critical. Although magmatic gas is unquestionably the driver, direct measurements of a paroxysm’s gas flux budget have remained challenging, to date. A particularly violent paroxysmal sequence took place on Etna on December 2015, intermittently involving all summit craters, especially the Voragine (VOR) that had previously displayed no…

010504 meteorology & atmospheric sciences2Earth and Planetary Sciences(all)UV camera010502 geochemistry & geophysics01 natural sciencesSequence (geology)Basaltic paroxysmsImpact craterBasaltic paroxysms; Etna; OMI; Thermal remote sensing; UV camera; Volcanic SO ; 2High spatial resolutionlcsh:ScienceThermal remote sensing0105 earth and related environmental sciences/dk/atira/pure/subjectarea/asjc/1900BasaltVolcanic SOgeographygeography.geographical_feature_categoryOMIGas fluxBasaltic paroxysmEtna volcanoVolcanoMagmavolcanic SO2General Earth and Planetary SciencesEtnalcsh:QSeismologyGeology
researchProduct

Strombolian eruptions and dynamics of magma degassing at Yasur Volcano (Vanuatu)

2020

Abstract Open vent basaltic volcanoes account for a substantial portion of the global atmospheric outgassing flux, largely through passive degassing and mild explosive activity. We present volcanic gas flux and composition data from Yasur Volcano, Vanuatu collected in July 2018. The average volcanic plume chemistry is characterised by a mean molar CO2/SO2 ratio of 2.14, H2O/SO2 of 148 and SO2/HCl of 1.02. The measured mean SO2 flux in the period of 6th to 9th July is 4.9 kg s−1. Therefore, the mean fluxes of the other species are 7.5 kg∙s−1 CO2, 208 kg∙s−1 H2O and 4.8 kg∙s−1 HCl. The degassing regime at Yasur volcano ranges from ‘passive’ to ‘active’ styles, with the latter including Stromb…

010504 meteorology & atmospheric sciencesBasaltic open vent volcanoessub-05Gas fluxes010502 geochemistry & geophysics01 natural sciencesStrombolian activityFlux (metallurgy)Geochemistry and PetrologyCrystal content in magmaPetrology0105 earth and related environmental sciencesBasaltgeographygeography.geographical_feature_categoryBasaltic open vent volcanoes Crystal content in magma Gas fluxes Magma fluxes Strombolian activity YasurStrombolian eruptionMagma fluxesOutgassingGeophysicsVolcanoVolcanic plumeMagmaInclusion (mineral)YasurGeology
researchProduct

Origin of primitive ultra-calcic arc melts at crustal conditions — Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands

2016

International audience; To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O–CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encount…

010504 meteorology & atmospheric sciencesGeochemistryLiquidusengineering.material010502 geochemistry & geophysics01 natural sciencesPrimitive arc magmasMantle (geology)law.inventionVulcanoGeochemistry and PetrologylawUltra-calcic[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologyPlagioclaseCrystallizationPetrology0105 earth and related environmental sciencesBasaltAeolian arcOlivineSettore GEO/07 - Petrologia E PetrografiaCrustGeophysics13. Climate actionPrimitive arc magmas Ultra-calcic Experiments Phase equilibria Vulcano Aeolian arcengineeringPhenocrystPhase equilibriaExperimentsGeology
researchProduct

Geochemistry of Noble Gases and CO2 in Fluid Inclusions From Lithospheric Mantle Beneath Wilcza Góra (Lower Silesia, Southwest Poland)

2018

Knowledge of the products originating from the subcontinental lithospheric mantle (SCLM) is crucial for constraining the geochemical features and evolution of the mantle. This study investigated the chemistry and isotope composition (noble gases and CO2 ) of fluid inclusions (FI) from selected mantle xenoliths originating from Wilcza Góra (Lower Silesia, southwest Poland), with the aim of integrating their petrography and mineral chemistry. Mantle xenoliths are mostly harzburgites and sometimes bear amphiboles, and are brought to the surface by intraplate alkaline basalts that erupted outside the north-easternmost part of the Eger (Ohře) Rift in Lower Silesia. Olivine (Ol) is classified int…

010504 meteorology & atmospheric sciencesGeochemistryengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)chemistry.chemical_compoundNoble gasenoble gases CO2 fluid inclusions mantle xenoliths European mantle SCLM MORB metasomatismFluid inclusionsMetasomatismlcsh:ScienceAmphibole0105 earth and related environmental sciencesBasaltEuropean mantleOlivineSCLMmetasomatismPartial meltingAmbientaleFluid inclusionMORBMantle xenolithSilicatemantle xenolithsfluid inclusionschemistrynoble gasesengineeringGeneral Earth and Planetary Scienceslcsh:QCO2Geology
researchProduct

The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano

2016

Volcanic emissions link the oxidation state of the Earth's mantle to the composition of the atmosphere. Whether the oxidation state of an ascending magma follows a redox buffer – hence preserving mantle conditions – or deviates as a consequence of degassing remains under debate. Thus, further progress is required before erupted basalts can be used to infer the redox state of the upper mantle or the composition of their co-emitted gases to the atmosphere. Here we present the results of X-ray absorption near-edge structure (XANES) spectroscopy at the iron K-edge carried out for a series of melt inclusions and matrix glasses from ejecta associated with three eruptions of Kīlauea volcano (Hawai…

010504 meteorology & atmospheric sciencesGeochemistrysub-05010502 geochemistry & geophysicsmelt inclusions01 natural sciencesMantle (geology)Mineral redox bufferOxidation stateGeochemistry and PetrologyHotspot (geology)Earth and Planetary Sciences (miscellaneous)EjectaGeophysic0105 earth and related environmental sciencesMelt inclusionsBasaltgeographygeography.geographical_feature_categorymelt inclusiondegassingoxygen fugacityXANESGeophysicsVolcanoSpace and Planetary SciencesulfurCO2Geology
researchProduct

Extensive, water-rich magma reservoir beneath southern Montserrat

2016

South Soufriere Hills and Soufriere Hills volcanoes are two km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufriere Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water…

010504 meteorology & atmospheric sciencesGeochemistrysub-05Pyroxeneengineering.material010502 geochemistry & geophysics01 natural sciencesMushGeochemistry and PetrologyPlagioclase0105 earth and related environmental sciencesMelt inclusionsBasaltgeographygeography.geographical_feature_categoryAndesiteWaterGeologyAndesiteVolcano13. Climate actionMagmaengineeringInclusion (mineral)Melt inclusionsSIMSGeologyPyroxenes
researchProduct

High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna

2014

Abstract We report here on the first record of carbon dioxide gas emission rates from a volcano, captured at ≈ 1 Hz. These data were acquired with a novel technique, based on the integration of UV camera observations (to measure SO2 emission rates) and field portable gas analyser readings of plume CO2/SO2 ratios. Our measurements were performedat the North East crater of Mount Etna, southern Italy, and the data reveal strong variability in CO2 emissions over timescales of tens to hundreds of seconds, spanning two orders of magnitude. This carries importantimplications for attempts to constrain global volcanic CO2 release to the atmosphere, and will lead to an increased insight into short te…

010504 meteorology & atmospheric sciencesLagPlume imagingInduced seismicity010502 geochemistry & geophysicsAtmospheric sciencesPassive degassing01 natural sciencesAtmospherechemistry.chemical_compoundImpact craterGeochemistry and Petrology0105 earth and related environmental sciencesCarbon dioxide; Passive degassing; Plume imaging; Volcanic remote sensing; Volcano seismology; Geophysics; Geochemistry and PetrologyBasaltgeographygeography.geographical_feature_categoryVolcano seismologyPlumeVolcanic remote sensingGeophysicsVolcanochemistryCarbon dioxide13. Climate actionCarbon dioxideCarbon dioxide; Passive degassing; Plume imaging; Volcanic remote sensing; Volcano seismology; Geochemistry and Petrology; GeophysicsSeismologyGeology
researchProduct

Changes in SO2 Flux Regime at Mt. Etna Captured by Automatically Processed Ultraviolet Camera Data

2019

We used a one-year long SO2 flux record, which was obtained using a novel algorithm for real-time automatic processing of ultraviolet (UV) camera data, to characterize changes in degassing dynamics at the Mt. Etna volcano in 2016. These SO2 flux records, when combined with independent thermal and seismic evidence, allowed for capturing switches in activity from paroxysmal explosive eruptions to quiescent degassing. We found SO2 fluxes 1.5−2 times higher than the 2016 average (1588 tons/day) during the Etna’s May 16−25 eruptive paroxysmal activity, and mild but detectable SO2 flux increases more than one month before its onset. The SO2 flux typically peaked during a lava fo…

010504 meteorology & atmospheric sciencesLava2SO<sub>2</sub> fluxesAutomatic processing010502 geochemistry & geophysicsAtmospheric sciencesmedicine.disease_causeUV Camerafluxe01 natural sciencesFlux (metallurgy)Thermalmedicinelcsh:Scienceexplosive basaltic volcanism0105 earth and related environmental sciencesSOExplosive eruptionEtna VolcanofluxesEtna volcanoGeneral Earth and Planetary Scienceslcsh:QEtna volcano; Explosive basaltic volcanism; SO; 2; fluxes; UV cameraGeologyUltravioletRemote Sensing
researchProduct

Understanding volcanoes in the Vanuatu arc

2016

We report the first helium isotope survey of volcanic gases, hot springs and some olivine phenocrysts along the Vanuatu island arc, from Tanna in the south to Vanua Lava in the north. Low CO2 content and low He-3/He-4 ratios in thermal fluids of Epi (4.0 +/- 0.1 R-a), Efate (4.5 +/- 0.1 R-a) and Pentecost (5.3 +/- 0.5 R-a) islands coherently indicate reduced mantle gas leakage and crustal contamination by radiogenic helium on these extinct volcanic systems of the former (Pliocene) arc. Instead, presently active Vanuatu volcanoes display He-3/He-4 and C/He-3 ratios typical of subduction-related volcanic arcs: He-3/He-4 ratios range from 6.4 +/- 0.5 Ra in southernmost Tanna and 7.23 +/- 0.09 …

010504 meteorology & atmospheric sciencesLavaEarth scienceGeochemistryVanuatu arcHelium isotopes[SDU.STU]Sciences of the Universe [physics]/Earth Sciences010502 geochemistry & geophysics01 natural sciencesVolcanic fluidsVolcanic GasesGeochemistry and Petrologyevent0105 earth and related environmental sciencesBasaltevent.disaster_typegeographygeography.geographical_feature_categoryVolcanic arcHotspot contributionFumaroleExtinct and active volcanoesMantle sourceSettore GEO/08 - Geochimica E VulcanologiaGeophysicsVolcano13. Climate actionVanuatu arc Volcanic fluids Helium isotopes Extinct and active volcanoes Mantle source Hotspot contributionIsland arcPhenocrystGeology
researchProduct