Search results for "BIF"

showing 10 items of 539 documents

Asymmetric Synthesis of Amino-Bis-Pyrazolone Derivatives via an Organocatalytic Mannich Reaction.

2017

A new series of N-Boc ketimines derived from pyrazolin-5-ones have been used as electrophiles in asymmetric Mannich reactions with pyrazolones. The amino-bis-pyrazolone products are obtained in excellent yields and stereoselectivities by employing a very low loading of 1 mol % of a bifunctional squaramide organocatalyst. Depending on the substitution at position 4 of the pyrazolones, the new protocol allows for the generation of one or two tetrasubstituted stereocenters, including a one-pot version combing the Mannich reaction with a base-mediated halogenation. peerReviewed

Mannich reactions010405 organic chemistryChemistryOrganic Chemistryasymmetric synthesisSquaramideEnantioselective synthesisHalogenation010402 general chemistry01 natural sciencespyrazolones0104 chemical sciencesStereocenteramino-bis-pyrazolone productschemistry.chemical_compoundElectrophilePyrazolonesOrganic chemistryBifunctionalMannich reactionta116The Journal of organic chemistry
researchProduct

One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly via a novel microwave-assisted method: impact on triazine re…

2018

One-step methods for fabricating green materials endowed with diverse functions is a challenge to be overcome in terms of reducing environmental risk and cost. We report a fast and easy synthesis of multifunctional materials composed of only fluorescent dots with structural flexibility and high sorption capability. The synthesis consists of a one-pot microwave-assisted reaction for the simultaneous formation of graphene quantum dots (GQDs) from organic precursors and their spontaneous self-assembly forming porous architectures. The GQD-assemblies are robust and no signs of degradation were observed with most organic solvents. The ensuing GQDs and their porous solids were fully characterized…

Materials scienceChemical substanceGrapheneGeneral Chemical EngineeringChemistry (all)One-pot synthesisSorptionNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistrylawQuantum dotChemical Engineering (all)Self-assembly0210 nano-technologyPorous mediumBifunctionalRSC Advances
researchProduct

Vinylphenylglycidyl ether-based colloidal architectures: high-functionality crosslinking reagents, hybrid raspberry-type particles and smart hydropho…

2014

An efficient synthetic strategy for the preparation of monodisperse colloidal core/shell architectures with reactive epoxy functionalities is reported, based on the bifunctional vinylphenylglycidyl ether monomer. Accessibility of the reactive immobilized epoxy moieties was quantified by UV/vis spectroscopy in an isorefractive medium. Inorganic–organic hybrid raspberry-type architectures revealed a tremendous inpact on the surface wettability of water.

Materials scienceGeneral Chemical EngineeringDispersityEtherGeneral ChemistryEpoxychemistry.chemical_compoundColloidMonomerchemistryChemical engineeringReagentvisual_artPolymer chemistryvisual_art.visual_art_mediumWettingBifunctionalRSC Adv.
researchProduct

Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods

2013

Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alk…

Materials scienceNanostructureOXIDE SURFACESNanoparticleMetalchemistry.chemical_compoundSELF-ASSEMBLED MONOLAYERSNANOPARTICLESOrganic chemistrySELF-ASSEMBLED MONOLAYERS; RAY PHOTOELECTRON-SPECTROSCOPY; POLARIZABLE CONTINUUM MODEL; MOLECULAR-ORBITAL METHODS; SENSITIZED SOLAR-CELLS; SURFACE FUNCTIONALIZATION; OXIDE SURFACES; ZINC-OXIDE; NANOPARTICLES; ALUMINUMZINC-OXIDEPhysical and Theoretical ChemistryBifunctionalSelf-assembled monolayerSURFACE FUNCTIONALIZATIONALUMINUMCombinatorial chemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMOLECULAR-ORBITAL METHODSGeneral EnergychemistryPOLARIZABLE CONTINUUM MODELvisual_artRAY PHOTOELECTRON-SPECTROSCOPYvisual_art.visual_art_mediumSurface modificationNanorodSENSITIZED SOLAR-CELLSBiosensorThe Journal of Physical Chemistry C
researchProduct

Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles

2016

Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version

Materials sciencePhotoluminescencePhotoluminescent Thin FilmsPerovskite NanoparticlesInorganic chemistryNanoparticleQuantum yield02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryThin filmBifunctionalPerovskite (structure):Materials [Engineering]LigandMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringchemistryCeramics and Composites0210 nano-technologyDispersion (chemistry)Chemical Communications
researchProduct

Hybrid magnetite–gold nanoparticles as bifunctional magnetic–plasmonic systems: three representative cases

2020

Hybrid systems based on magnetite and gold nanoparticles have been extensively used as bifunctional materials for bio- and nano-technology. The properties of these composites are assumed to be closely related to the magnetite to gold mass ratio and to the geometry of the resulting hetero-structures. To illustrate this, we compare and analyze the optical and magnetic properties of core-shell, dumbbell-like dimers and chemical cross-linked pairs of magnetite and gold nanoparticles in detail. We explore how the combination of gold with magnetite can lead to an improvement of the optical properties of these systems, such as tunability, light scattering enhancement or an increase of the local el…

Materials sciencePhysics::OpticsNanotechnologyLight scatteringchemistry.chemical_compoundchemistryColloidal goldElectric fieldHybrid systemDispersion (optics)General Materials ScienceBifunctionalPlasmonMagnetiteNanoscale Horizons
researchProduct

Synthesis of Amphiphilic Block Copolypept(o)ides by Bifunctional Initiators: Making PeptoMicelles Redox Sensitive.

2015

In this work, the synthesis of polypeptoid-block-polypeptide copolymers (block copolypept(o)ides) based on bifunctional initiators is described, which introduces a distinct chemical entity at the connection between both blocks. With a view towards redox-sensitive block copolypept(o)ides, a cystamine-based initiator was used to synthesize polysarcosine macroinitiators with degrees of polymerization (Xn) between 100 and 200 displaying monomodal molecular weight distributions and dispersities (Đ) around 1.1 as determined by size exclusion chromatography. Block copolypept(o)ides with a poly(γ-t-butyloxycarbonyl-L-glutamate) (PGlu(O(t) Bu)) block (Xn = 25 or 50) were synthesized by controlled N-…

Materials sciencePolymers and PlasticsOrganic ChemistrySize-exclusion chromatographyMicellechemistry.chemical_compoundchemistryPolymerizationCystamineBlock (telecommunications)Polymer chemistryAmphiphileMaterials ChemistryCopolymerBifunctionalPeptidesMicellesMacromolecular rapid communications
researchProduct

Turing pattern formation in the Brusselator system with nonlinear diffusion.

2013

In this work we investigate the effect of density dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in 1D and 2D spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supe…

Mathematical analysisInner coreFOS: Physical sciencesPattern formationMathematical Physics (math-ph)Pattern Formation and Solitons (nlin.PS)Turing bifurcationNonlinear Sciences - Pattern Formation and SolitonsInstabilityDomain (mathematical analysis)Nonlinear systemBrusselatorAmplitudeActivator-Inhibitor kineticsPattern formationAmplitude equationSettore MAT/07 - Fisica MatematicaTuringcomputerMathematical Physicscomputer.programming_languageMathematicsPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

An Iterative Method for Bifurcation-Free Resonant Inductive Power Transfer System Design

2021

The development of electric mobility makes the charging systems one of the main discussed topic. Among the different technologies, Resonant Inductive Power Transfer (RIPT) systems are in deep study. Several aspects, including the choice of coils, the compensation network and the bifurcation phenomenon are necessary for a proper design of the system. In this paper an iterative method for bifurcation-free RIPT system design is provided as a valid solution to the need of accurate models requiring low computational efforts.

Mathematical modelComputer sciencebusiness.industryIterative methodwireless chargingmodelingSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciCompensation (engineering)resonant inductive power transfer (RIPT)Electronic engineeringMaximum power transfer theoremWirelessSystems designBifurcationbusinessBifurcationVoltage2021 10th International Conference on Renewable Energy Research and Application (ICRERA)
researchProduct

Some Remarks on Calabi-Yau Manifolds

2010

Here we focus on the geometry of the “mirror quintic” Y and its generalizations. In particular, we illustrate how to obtain new birational models of Y . The article under review can be regarded as an announcement of or supplement to results in forthcoming papers of the author and his collaborators concerning quintic threefolds, the Dwork pencil, and its natural generalization to higher dimensions [G. Bini, “Quotients of hypersurfaces in weighted projective space”, preprint, arxiv.org/ abs/0905.2099, Adv. Geom., to appear; G. Bini, B. van Geemen and T. L. Kelly, “Mirror quintics, discrete symmetries and Shioda maps”, preprint, arxiv.org/abs/0809. 1791, J. Algebraic Geom., to appear; G. Bini …

Mathematics::Algebraic GeometryQA1-939calabi-yau manifoldsCalabi-Yau coomologia orbifoldSettore MAT/03 - Geometriaorbifold cohomologyNonlinear Sciences::Pattern Formation and SolitonsMathematics
researchProduct