Search results for "BLACK-HOLE"

showing 4 items of 24 documents

Hawking radiation correlations in Bose-Einstein condensates using quantum field theory in curved space

2013

The density-density correlation function is computed for the Bogoliubov pseudoparticles created in a Bose-Einstein condensate undergoing a black hole flow. On the basis of the gravitational analogy, the method used relies only on quantum field theory in curved spacetime techniques. A comparison with the results obtained by ab initio full condensed matter calculations is given, confirming the validity of the approximation used, provided the profile of the flow varies smoothly on scales compared to the condensate healing length.

High Energy Physics - TheoryNuclear and High Energy PhysicsHAWKING RADIATION[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Black-hole evaporationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCONDENSATI DI BOSE EINSTEINGeneral Relativity and Quantum Cosmologylaw.inventionGravitationGeneral Relativity and Quantum CosmologyCorrelation functionlawQuantum mechanics0103 physical sciencesQuantum field theory010306 general physicsCurved spaceCondensed Matter::Quantum GasesPhysicsQuantum field theory in curved spacetime[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Condensed Matter::Other010308 nuclear & particles physicsBlack holeHigh Energy Physics - Theory (hep-th)Quantum Gases (cond-mat.quant-gas)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Condensed Matter - Quantum GasesBose–Einstein condensateAnalog gravityHawking radiationPhysical Review D
researchProduct

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

2019

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

Burst astrophysicAstrofísicaneutron star: binary010504 meteorology & atmospheric sciencesBinary numberAstrophysics01 natural sciencesLIGOQCSUPERNOVArelativistic jetsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01counterpartGRBGravitational waves (678)Physical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaGravitational waveGravitationstarsblack-holeAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)precursor activityGravitational wavesSettore FIS/05 - Astronomia e AstrofisicasupernovaCORE-COLLAPSEGamma-ray burstGravitational wave sourcesScience & TechnologyVirgoRCUKAstronomy and AstrophysicsHigh energy astrophysics (739)RedshiftDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiedetector: sensitivityVIRGOSpace and Planetary Sciencegravitational radiation: emissionBLACK-HOLEddc:520Gravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSGravitacióAstronomySignalGeneral Relativity and Quantum CosmologyBurst astrophysicslocalizationemission010303 astronomy & astrophysicsPhysicsDetectorGamma-ray bursts (629)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourcePRECURSOR ACTIVITYGamma-ray burstsLIGO (920)High energy astrophysicsdata analysis methodBurst astrophysics (187)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstAstronomy & AstrophysicsMASSgravitational radiation: direct detectionGravitational wave astronomy Gravitational wave sources LIGO; Gravitational waves Gamma-ray bursts Burst astrophysics High energy astrophysicsGravitational wave astronomy (675)electromagnetic field: production0103 physical sciencesnumerical calculationsGRB; gravitational waves; LIGO; VirgoSTFC0105 earth and related environmental sciencesgravitational wavesneutron starsGravitational waveCOUNTERPARTgravitational radiationLIGOcore-collapsegravitational radiation detectorGravitational wave sources (677)radiationNeutron starPhysics and AstronomymassRADIATIONEMISSIONGravitational wave astronomy; Gravitational wave sources; LIGO; Gravitational waves; Gamma-ray bursts; Burst astrophysics; High energy astrophysics
researchProduct

The THESEUS space mission concept: science case, design and expected performances

2018

THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing …

IonizationAtmospheric Sciencecosmological modelCherenkov Telescope Array[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyDark ageMASSIVE SINGLE STARSStar formation rates Gamma ray01 natural sciencesCosmology: observationlocalizationlaw.inventionAstrophysicEinstein Telescopeobservational cosmologylawObservational cosmologyRe-ionizationCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionizationLIGOobservations [Cosmology]Telescope010303 astronomy & astrophysicsHigh sensitivityHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMulti-wavelengthenergy: highsezelegamma-ray burstsCosmology: observationsCosmology: observations; Dark ages; First stars; Gamma-ray: bursts; Re-ionization; Aerospace Engineering; Space and Planetary ScienceAstrophysics::Instrumentation and Methods for Astrophysicsimagingstar: formationburst [Gamma-ray]observatoryGeophysicsDark agesX rays Cosmology: observationAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenasignatureStarTIDAL DISRUPTIONGamma-ray: burstAstrophysics::High Energy Astrophysical PhenomenaSIMILAR-TO 6Socio-culturaleFOS: Physical sciencesAerospace EngineeringGamma-ray: burstsobservation [Cosmology]galaxy: luminosityX-ray astronomy: instrumentation7 CANDIDATE GALAXIESAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burst114 Physical sciencesSettore FIS/03 - Fisica della MateriaTelescopeX-raybursts [Gamma-ray]FIS/05 - ASTRONOMIA E ASTROFISICASettore FIS/05 - Astronomia e AstrofisicaFirst star0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]KAGRAInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsFirst starsLIGHT CURVESEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and Astrophysics115 Astronomy Space scienceCherenkov Telescope ArrayredshiftsensitivityRedshiftNEUTRON-STAR MERGERmessengerVIRGOelectromagneticLUMINOSITY FUNCTIONSpace and Planetary ScienceBLACK-HOLEGeneral Earth and Planetary SciencesGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

2019

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the first observing run (O1), from September $12^\mathrm{th}$, 2015 to January $19^\mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^\mathrm{th}$, 2016 to August $25^\mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary …

AstrofísicaDYNAMICSGravitacióneutron star: binaryAstronomyGeneral Physics and AstronomyBinary numberAstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010305 fluids & plasmasgravitational waves black holesAstrophysicSIGNALSPopulation DistributionsLIGOQCQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HESettore FIS/01gravitational radiation detector: networkPROGENITORSPhysicsgravitational wavesPhysical Sciencesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaMETALLICITYAstrophysics - Cosmology and Nongalactic AstrophysicsGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)QC1-999gr-qcAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsMASSAstrophysics; GravitationGeneral Relativity and Quantum CosmologyBinary black holebinary: coalescenceSYSTEMS0103 physical sciences010306 general physicsSTFCScience & TechnologyGravitational wavegravitational radiationRCUKGravitational Wave Physicsbinary: compactLIGOEVOLUTIONBlack holeNeutron starVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionBLACK-HOLERADIATIONINFERENCE[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct