Search results for "BOSONS"
showing 10 items of 83 documents
Search for anomalous heavy-flavor quark production in association with W bosons.
2004
We present a search for anomalous production of heavy-flavor quark jets in association with a W boson at the Fermilab Tevatron ppbar Collider. This search is conducted through an examination of the exclusive jet spectrum of W+jets final states in which the heavy-flavor quark content has been enhanced by requiring at least one tagged jet in an event. Jets are tagged by the combined use of two algorithms, one based on semileptonic decays of b/c hadrons, and the other on their lifetimes. We compare data in e+jets (164 pb-1) and mu+jets (145 pb-1) channels, collected with the D0 detector at sqrt{s}=1.96 TeV, to expectations from the standard model, and set upper limits on anomalous production o…
Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons
2010
In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.
Weak pseudo-bosons
2020
We show how the notion of {\em pseudo-bosons}, originally introduced as operators acting on some Hilbert space, can be extended to a distributional settings. In doing so, we are able to construct a rather general framework to deal with generalized eigenvectors of the multiplication and of the derivation operators. Connections with the quantum damped harmonic oscillator are also briefly considered.
Coupled Susy, pseudo-bosons and a deformed su(1, 1) Lie algebra
2021
Abstract In a recent paper a pair of operators a and b satisfying the equations a † a = bb † + γ 1 and aa † = b † b + δ 1 , has been considered, and their nature of ladder operators has been deduced and analyzed. Here, motivated by the spreading interest in non self-adjoint operators in quantum mechanics, we extend this situation to a set of four operators, c, d, r and s, satisfying dc = rs + γ 1 and cd = sr + δ 1 , and we show that they are also ladder operators. We show their connection with biorthogonal families of vectors and with the so-called D -pseudo bosons. Some examples are discussed.
Non linear pseudo-bosons versus hidden Hermiticity
2011
The increasingly popular concept of a hidden Hermiticity of operators (i.e., of their Hermiticity with respect to an {\it ad hoc} inner product in Hilbert space) is compared with the recently introduced notion of {\em non-linear pseudo-bosons}. The formal equivalence between these two notions is deduced under very general assumptions. Examples of their applicability in quantum mechanics are discussed.
Non linear pseudo-bosons versus hidden Hermiticity. II: The case of unbounded operators
2012
Parallels between the notions of nonlinear pseudobosons and of an apparent non-Hermiticity of observables as shown in paper I (arXiv: 1109.0605) are demonstrated to survive the transition to the quantum models based on the use of unbounded metric in the Hilbert space of states.
Abstract ladder operators and their applications
2021
We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation r…
Precision electroweak measurements on the Z resonance
2005
We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, $\MZ$ and $\GZ$, and its couplings to fermions, for example the $\rho$ parameter and the effective electroweak mixing angle, are precisely measured. The number of light neutrino species is determined to be 2.9840…
Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP
2013
The ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group.-- arXiv:1302.3415
EPPS16 - First nuclear PDFs to include LHC data
2017
We present results of our recent EPPS16 global analysis of NLO nuclear parton distribution functions (nPDFs). For the first time, dijet and heavy gauge boson production data from LHC proton-lead collisions have been included in a global fit. Especially, the CMS dijets play an important role in constraining the nuclear effects in gluon distributions. With the inclusion of also neutrino-nucleus deeply-inelastic scattering and pion-nucleus Drell-Yan data and a proper treatment of isospin-corrected data, we were able to free the flavor dependence of the valence and sea quark nuclear modifications for the first time. This gives us less biased, yet larger, flavor by flavor uncertainty estimates. …