Search results for "BOSONS"

showing 10 items of 83 documents

Search for anomalous heavy-flavor quark production in association with W bosons.

2004

We present a search for anomalous production of heavy-flavor quark jets in association with a W boson at the Fermilab Tevatron ppbar Collider. This search is conducted through an examination of the exclusive jet spectrum of W+jets final states in which the heavy-flavor quark content has been enhanced by requiring at least one tagged jet in an event. Jets are tagged by the combined use of two algorithms, one based on semileptonic decays of b/c hadrons, and the other on their lifetimes. We compare data in e+jets (164 pb-1) and mu+jets (145 pb-1) channels, collected with the D0 detector at sqrt{s}=1.96 TeV, to expectations from the standard model, and set upper limits on anomalous production o…

Quarkflavour modelParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHadronstandard modelTevatronGeneral Physics and AstronomyFOS: Physical sciencesJet (particle physics)01 natural sciences7. Clean energyHigh Energy Physics - Experimentlaw.inventionStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilabquark production13.85.Qk 13.85.Nielementary particle jets010306 general physicsColliderBosonPhysicsproton-proton inclusive interactions010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyW bosonshigh-energy elementary particle interactionsHigh Energy Physics::ExperimentPhysical review letters
researchProduct

Modified Landau levels, damped harmonic oscillator and two-dimensional pseudo-bosons

2010

In a series of recent papers one of us has analyzed in some details a class of elementary excitations called {\em pseudo-bosons}. They arise from a special deformation of the canonical commutation relation $[a,a^\dagger]=\1$, which is replaced by $[a,b]=\1$, with $b$ not necessarily equal to $a^\dagger$. Here, after a two-dimensional extension of the general framework, we apply the theory to a generalized version of the two-dimensional Hamiltonian describing Landau levels. Moreover, for this system, we discuss coherent states and we deduce a resolution of the identity. We also consider a different class of examples arising from a classical system, i.e. a damped harmonic oscillator.

Solutions of wave equations: bound statesBoson systems[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences01 natural sciencesCanonical commutation relationsymbols.namesakedamped harmonic oscillator[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Modified Landau levelQuantum mechanics0103 physical sciences010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsHarmonic oscillatorEigenvalues and eigenvectorsLandau levelsBosonMathematical physicsPhysics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsLandau quantizationMathematical Physics (math-ph)harmonic oscillatorssymbolsCoherent statespseudo-bosonsHamiltonian (quantum mechanics)
researchProduct

Weak pseudo-bosons

2020

We show how the notion of {\em pseudo-bosons}, originally introduced as operators acting on some Hilbert space, can be extended to a distributional settings. In doing so, we are able to construct a rather general framework to deal with generalized eigenvectors of the multiplication and of the derivation operators. Connections with the quantum damped harmonic oscillator are also briefly considered.

Statistics and ProbabilityFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmassymbols.namesakeGeneralized eigenvector0103 physical sciences010306 general physicsQuantumSettore MAT/07 - Fisica MatematicaHarmonic oscillatorMathematical PhysicsMathematical physicsBosonPhysicsHilbert spaceStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Construct (python library)non self-adjoint HamiltonianModeling and SimulationsymbolsBiorthogonal setMultiplicationpseudo-bosons
researchProduct

Coupled Susy, pseudo-bosons and a deformed su(1, 1) Lie algebra

2021

Abstract In a recent paper a pair of operators a and b satisfying the equations a † a = bb † + γ 1 and aa † = b † b + δ 1 , has been considered, and their nature of ladder operators has been deduced and analyzed. Here, motivated by the spreading interest in non self-adjoint operators in quantum mechanics, we extend this situation to a set of four operators, c, d, r and s, satisfying dc = rs + γ 1 and cd = sr + δ 1 , and we show that they are also ladder operators. We show their connection with biorthogonal families of vectors and with the so-called D -pseudo bosons. Some examples are discussed.

Statistics and ProbabilityPhysicsCoupled SUSY quantum mechanicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsSupersymmetryLadder operatorModeling and SimulationBiorthogonal systemLadder operatorsLie algebraComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPseudo-bosonsConnection (algebraic framework)Settore MAT/07 - Fisica MatematicaMathematical PhysicsBosonMathematical physics
researchProduct

Non linear pseudo-bosons versus hidden Hermiticity

2011

The increasingly popular concept of a hidden Hermiticity of operators (i.e., of their Hermiticity with respect to an {\it ad hoc} inner product in Hilbert space) is compared with the recently introduced notion of {\em non-linear pseudo-bosons}. The formal equivalence between these two notions is deduced under very general assumptions. Examples of their applicability in quantum mechanics are discussed.

Statistics and ProbabilityPhysicsQuantum PhysicsGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Functional Analysis (math.FA)Mathematics - Functional AnalysisNonlinear systemTheoretical physicsModeling and Simulation46C15 46N50 81Q12 81Q80FOS: Mathematicspseudo-bosonsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaDynamic and formal equivalenceMathematical PhysicsBoson
researchProduct

Non linear pseudo-bosons versus hidden Hermiticity. II: The case of unbounded operators

2012

Parallels between the notions of nonlinear pseudobosons and of an apparent non-Hermiticity of observables as shown in paper I (arXiv: 1109.0605) are demonstrated to survive the transition to the quantum models based on the use of unbounded metric in the Hilbert space of states.

Statistics and ProbabilityPhysicsQuantum PhysicsParallelism (rhetoric)Hilbert spaceFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsObservableMathematical Physics (math-ph)Nonlinear systemsymbols.namesakeModeling and SimulationMetric (mathematics)symbolspseudo-bosonsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaQuantumMathematical PhysicsMathematical physicsBoson
researchProduct

Abstract ladder operators and their applications

2021

We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation r…

Statistics and ProbabilityQuantum PhysicsPure mathematicsGeneralized Heisenberg algebraFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)ladder operatorsLadder operatorModeling and Simulationpseudo-bosonsAlgebra over a fieldQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsJournal of Physics A: Mathematical and Theoretical
researchProduct

Precision electroweak measurements on the Z resonance

2005

We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, $\MZ$ and $\GZ$, and its couplings to fermions, for example the $\rho$ parameter and the effective electroweak mixing angle, are precisely measured. The number of light neutrino species is determined to be 2.9840…

Top quarkFORWARD-BACKWARD ASYMMETRYPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)electron-positron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionPhysicsQuantum chromodynamicsOPALElectron–positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion–antifermion production; Precision measurements at the Z resonance; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs bosonParticle physics - ExperimentPhysicsSettore FIS/01 - Fisica SperimentaleElectroweak interactionFORWARD-BACKWARD ASYMMETRY; FERMION-PAIR PRODUCTION; HADRONIC-Z-DECAYS; TOP-QUARK MASS; ANGLE BHABHA SCATTERING; W-BOSON MASS; CROSS-SECTION ASYMMETRY; Z-LINE-SHAPE; SEMILEPTONIC BRANCHING RATIOS; CARLO EVENT GENERATORdecays of heavy intermediate gauge bosons; effective coupling constants; electron-positron physics; electroweak interactions; fermion-antifermion production; higgs boson; neutral weak current; precision measurements at the z resonance; radiative corrections; tests of the standard model; top quark; w boson; z bosonRadiative correctionsALEPHLARGE ELECTRON POSITRON COLLIDERRadiative correctionHigh Energy Physics - PhenomenologyFIS/01 - FISICA SPERIMENTALEDecays of heavy intermediate gauge bosonsL3Z-LINE-SHAPEHiggs bosonFERMION-PAIR PRODUCTIONPARTICLE PHYSICSFísica nuclearNeutrinoFermion–antifermion productionPrecision measurements at the Z resonanceTests of the Standard ModelParticle physicsZ bosonfermion-antifermion productionElectroweak interactionsHiggs bosonFOS: Physical sciencesddc:500.2Elementary particle physics ; z boson ; LEP ; electroweakDecays of heavy intermediate gauge bosonEffective coupling constantPartícules (Física nuclear)Standard ModelNeutral weak currentelectroweak theory Z boson DELPHI ALEPH OPAL L30103 physical sciencesANGLE BHABHA SCATTERINGCROSS-SECTION ASYMMETRYSEMILEPTONIC BRANCHING RATIOS010306 general physicsTOP-QUARK MASSEffective coupling constantsDELPHICoupling constantElectron–positron physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFermionCARLO EVENT GENERATORTop quarkW-BOSON MASSFORWARD-BACKWARD ASYMMETRY FERMION-PAIR PRODUCTION HADRONIC-Z-DECAYS TOP-QUARK MASS ANGLE BHABHA SCATTERING W-BOSON MASS CROSS-SECTION ASYMMETRY Z-LINE-SHAPE SEMILEPTONIC BRANCHING RATIOS CARLO EVENT GENERATOR[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Experimental High Energy PhysicsElectron–positron physicW bosonHigh Energy Physics::ExperimentFIS/04 - FISICA NUCLEARE E SUBNUCLEAREHADRONIC-Z-DECAYSPHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS
researchProduct

Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

2013

The ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group.-- arXiv:1302.3415

Top quarkPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALElectron–positron annihilationPrecision measurements at W-pair energiesWW bosonGeneral Physics and AstronomyCOLOR DIPOLE MODEL01 natural sciences7. Clean energyZZ bosonMathematical SciencesHigh Energy Physics - Experimentelectroweak interactionsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)electron-positron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FERMION-LOOP SCHEMEANOMALOUS MAGNETIC-MOMENTOF-MASS ENERGIES; TOP-QUARK MASS; CARLO EVENT GENERATOR; HADRONIC Z-DECAYS; INVARIANT YFS EXPONENTIATION; ANOMALOUS MAGNETIC-MOMENT; (UN)STABLE W+W-PRODUCTION; FERMION-LOOP SCHEME; COLOR DIPOLE MODEL; LEADING ORDER QCDeffective coupling constantsBosonPhysicsOPALPhysicsElectroweak interactionSettore FIS/01 - Fisica Sperimentalehep-phPrecision measurements at WW-pair energiesRadiative correctionsALEPHNuclear & Particles PhysicsLARGE ELECTRON POSITRON COLLIDER3. Good healthRadiative correctionHigh Energy Physics - PhenomenologyOF-MASS ENERGIESDecays of heavy intermediate gauge bosonsINVARIANT YFS EXPONENTIATIONPrecision measurements at W-pair energieFermion-antifermion productionL3Physical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPARTICLE PHYSICSFísica nuclearProduction (computer science)decays of heavy intermediate gauge bosons; neutral weak current; w boson; tests of the standard model; precision measurements at w-pair energies; fermion-antifermion production; top quark; electron-positron physics; electroweak interactions; effective coupling constants; higgs boson; z boson; radiative correctionsFermion–antifermion productionELECTROWEAK INTERACTIONTests of the Standard ModelParticle Physics - ExperimentParticle physicsZ bosonElectron-positron physicElectroweak interactionsLEADING ORDER QCDHiggs boson(UN)STABLE W+W-PRODUCTIONFOS: Physical sciencesdecays of heavy intermediate gauge bosonsddc:500.2Decays of heavy intermediate gauge bosonEffective coupling constantPartícules (Física nuclear)Standard ModelNuclear physicsPhysics and Astronomy (all)Neutral weak current0103 physical sciencesddc:530010306 general physicsTOP-QUARK MASSEffective coupling constantsDELPHIElectron–positron physicshep-ex010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyCARLO EVENT GENERATORTop quarkradiative correctionsElectron-positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion-antifermion production; Precision measurements at W-pair energies; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs bosonHADRONIC Z-DECAYSCol·lisions (Física nuclear)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Experimental High Energy PhysicsLarge Electron–Positron ColliderW bosonHigh Energy Physics::ExperimentElectron-positron physics
researchProduct

EPPS16 - First nuclear PDFs to include LHC data

2017

We present results of our recent EPPS16 global analysis of NLO nuclear parton distribution functions (nPDFs). For the first time, dijet and heavy gauge boson production data from LHC proton-lead collisions have been included in a global fit. Especially, the CMS dijets play an important role in constraining the nuclear effects in gluon distributions. With the inclusion of also neutrino-nucleus deeply-inelastic scattering and pion-nucleus Drell-Yan data and a proper treatment of isospin-corrected data, we were able to free the flavor dependence of the valence and sea quark nuclear modifications for the first time. This gives us less biased, yet larger, flavor by flavor uncertainty estimates. …

Uncertainty estimates Uncertainty analysisHigh Energy Physics::LatticeLead collisionsNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesNuclear parton distribution functions114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Production dataHigh Energy Physics::ExperimentNuclear modificationNuclear ExperimentNuclear effectsBosonsDistribution functionsGlobal analysisInelastic scattering Deeply inelastic scatterings
researchProduct