Search results for "BRI"

showing 10 items of 8668 documents

Key factors towards a high-quality additive manufacturing process with ABS material

2019

Abstract Additive Manufacturing technologies have gained a lot of popularity during the past years. The current challenge being the transition of this manufacturing technology from prototype oriented towards mass production. In order to achieve this, fabrication times and mechanical parameters must be improved. This paper aims to identify which are the parameters that have the highest influence on parts obtained with fused deposition modeling (FDM) technology from ABS material. In addition, this study identifies which are the most accurate methods to test the mechanical properties of FDM parts while still respecting ASTM standard for testing the tensile properties of plastics. It was found …

010302 applied physicsManufacturing technologyMaterials scienceFabricationFused deposition modelingAstm standardManufacturing processbusiness.industrymedia_common.quotation_subject02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionKey factorslaw0103 physical sciencesUltimate tensile strengthQuality (business)0210 nano-technologyProcess engineeringbusinessmedia_commonMaterials Today: Proceedings
researchProduct

Mechanical properties of macroscopic magnetocrystals

2019

Abstract We studied experimentally and by numerical simulations the mechanical response of arrays of macroscopic magnetic spheres when an external stress is applied. First, the tensile strength of single chains and ribbons was analyzed. Then, simple cubic (cP), hexagonal (Hx) and hybrid (cP-Hx) structures, called here magnetocrystals , were assembled and subjected to tensile stress, bending stress and torsion until failure was reached. Atomistic crystalline structures are isotropic, but in the case of magnetocrystals, even when geometric isotropy is obeyed, dipolar magnetic interactions introduce a physical anisotropy which modifies, in a non-usual manner, the structures response to the kin…

010302 applied physicsMaterials scienceIsotropyTorsion (mechanics)02 engineering and technologyBending021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsStress (mechanics)Condensed Matter::Materials ScienceBrittleness0103 physical sciencesUltimate tensile strengthHexagonal latticeComposite material[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]0210 nano-technologyAnisotropyComputingMilieux_MISCELLANEOUS
researchProduct

Optimization of a laser ion source for $^{163}$Ho isotope separation

2019

To measure the mass of the electron neutrino, the “Electron Capture in Holmium-163” (ECHo) collaboration aims at calorimetrically measuring the spectrum following electron capture in 163Ho. The success of the ECHo experiment depends critically on the radiochemical purity of the 163Ho sample, which is ion-implanted into the calorimeters. For this, a 30 kV high transmission magnetic mass separator equipped with a resonance ionization laser ion source is used. To meet the ECHo requirements, the ion source unit was optimized with respect to its thermal characteristics and material composition by means of the finite element method thermal-electric calculations and chemical equilibrium simulation…

010302 applied physicsMaterials sciencePhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Electron captureFOS: Physical sciencesThermal ionizationInstrumentation and Detectors (physics.ins-det)Laser01 natural sciencesIon source010305 fluids & plasmasIsotope separationlaw.inventionPhysics - Atomic PhysicslawIonization0103 physical sciencesThermalAtomic physicsChemical equilibriumInstrumentation
researchProduct

HCl gas gettering of low-cost silicon

2013

HCl gas gettering is a cheap and simple technique to reduce transition metal concentrations in silicon. It is attractive especially for low-cost silicon materials like upgraded metallurgical grade (UMG) silicon, which usually contain 3d transition metals in high concentrations. Etching of silicon by HCl gas occurs during HCl gas gettering above a certain onset temperature. The etching rate as well as the gettering efficiency was experimentally determined as a function of the gettering temperature, using UMG silicon wafers. The activation energy of the etching reaction by HCl gas was calculated from the obtained data. The gettering efficiency was determined by analyzing Ni as a representativ…

010302 applied physicsMaterials scienceSiliconEtching rateInorganic chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesActivation energy021001 nanoscience & nanotechnologyCondensed Matter Physics7. Clean energy01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryTransition metalGetterEtching (microfabrication)0103 physical sciencesMaterials ChemistryWaferElectrical and Electronic Engineering0210 nano-technologyInductively coupled plasma mass spectrometryphysica status solidi (a)
researchProduct

Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

2018

This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceFabricationelectrical conductivityBlanketCondensed Matter Physics01 natural sciencesTemperature measurement010305 fluids & plasmasCorrosionchemistry.chemical_compoundThermal conductivitydual-coolant lead-lithium (DCLL) blanketFlexural strengthchemistryCorrosion by PbLi0103 physical sciencesThermalSilicon carbide:NATURAL SCIENCES:Physics [Research Subject Categories]flow channel insert (FCI)thermal conductivityComposite materialporous SiCIEEE Transactions on Plasma Science
researchProduct

Structural phase transition in [(C2H5)4N][(CH3)4N]ZnCl4

2019

The hybrid crystal [(C2H5)4N][(CH3)4N]ZnCl4 was studied using several experimental methods. DSC studies revealed the first order phase transition to the high temperature phase at about 496 K. This phase transition was confirmed in dielectric studies. Optical observation revealed the domain structure appearance characteristic for that of the phase transition between tetragonal and orthorhombic phases. This phase transition shows a lowering of symmetry as in the case of bromide analogs. Additionally, the optical studies showed the appearance of a number of cracks in the sample and in some cases, the samples became milky after cooling from the high temperature to the room temperature phase.

010302 applied physicsPhase transitionStructural phaseMaterials scienceThermodynamics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCrystalPhase (matter)0103 physical sciencesGeneral Materials ScienceExperimental methods0210 nano-technologyOrganic–inorganic hybrid compounds; phase transitions; thermal and dielectric properties; ferroelastic domainsInstrumentationPhase Transitions
researchProduct

Nanoscale Etching of GaAs and InP in Acidic H<sub>2</sub>O<sub>2</sub> Solution: A Striking Contrast in Kinetics and Surface …

2018

In this study of nanoscale etching for state-of-the-art device technology the importance of the nature of the surface oxide, is demonstrated for two III-V materials. Etching kinetics for GaAs and InP in acidic solutions of hydrogen peroxide are strikingly different. GaAs etches much faster, while the dependence of the etch rate on the H+ concentration differs markedly for the two semiconductors. Surface analysis techniques provided information on the surface composition after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin stoichiometric oxide that forms a blocking layer on InP. Reaction schemes are provided that allow one to understand the results, in particular…

010302 applied physicsReaction mechanismMaterials scienceKinetics02 engineering and technologyContrast (music)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsChemical engineeringEtching (microfabrication)0103 physical sciencesGeneral Materials Science0210 nano-technologyNanoscopic scaleSolid State Phenomena
researchProduct

Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)

2018

Abstract The monitoring of heat flux is becoming more and more critical for many materials and structures approaching nanometric dimensions. Scanning Thermal Microscopy (SThM) is one of the tools available for thermal measurement at the nanoscale and requires calibration. Here we report on a micro-hotplate device made of a platinum heater suspended on thin silicon nitride (SiN) membranes integrating specific features for SThM calibration. These heated reference samples can include a localized resistive temperature sensors (RTD) or standalone platinum membranes (typically 10 × 10 μm2) on which the temperature can be measured precisely. This functional area is dedicated to (1) estimate the th…

010302 applied physicsResistive touchscreenMaterials scienceFabricationbusiness.industryThermal resistanceMetals and Alloys02 engineering and technologyScanning thermal microscopy021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesTemperature measurementSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOperating temperatureThermocouple0103 physical sciencesMicroscopyOptoelectronicsElectrical and Electronic Engineering0210 nano-technologybusinessInstrumentation
researchProduct

Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit

2019

Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.

010302 applied physicsSteady state (electronics)Statistical Mechanics (cond-mat.stat-mech)non-equilibrium Green's functionsFOS: Physical sciences02 engineering and technologyPositive-definite matrix021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsDiagrammatic reasoningspectral propertiesFrequency domainProduct (mathematics)0103 physical sciencesApplied mathematicsLimit (mathematics)Perturbation theory (quantum mechanics)0210 nano-technologyRepresentation (mathematics)kvanttifysiikkaCondensed Matter - Statistical MechanicsMathematicsperturbation theory
researchProduct

Calculation of electronic g-tensors using coupled cluster theory.

2009

A scheme for the calculation of the electronic g-tensor at the coupled cluster (CC) level is presented. The reported implementation employs an effective one-electron spin-orbit operator, allows the inclusion of arbitrary excitations in the cluster operator, and offers various options concerning the treatment of orbital relaxation and choice of reference determinants. In addition, the use of gauge-including atomic orbitals (GIAOs) is possible to overcome the gauge origin problem. Benchmark calculations for the NH ((3)Sigma(-)) radical reveal the importance of electron correlation effects for the accurate prediction of the g-shift as well as the slow basis set convergence of such calculations…

010304 chemical physicsElectronic correlationChemistryOperator (physics)010402 general chemistry01 natural sciences0104 chemical sciencesHybrid functionalCoupled clusterAtomic orbitalQuantum mechanics0103 physical sciencesCluster (physics)Density functional theoryPhysical and Theoretical ChemistryBasis setThe journal of physical chemistry. A
researchProduct