Search results for "Bacillus thuringiensi"
showing 10 items of 213 documents
Assessment of the Antimicrobial Activity and the Entomocidal Potential of Bacillus thuringiensis Isolates from Algeria.
2017
This work represents the first initiative to analyze the distribution of B. thuringiensis in Algeria and to evaluate the biological potential of the isolates. A total of 157 isolates were recovered, with at least one isolate in 94.4% of the samples. The highest Bt index was found in samples from rhizospheric soil (0.48) and from the Mediterranean area (0.44). Most isolates showed antifungal activity (98.5%), in contrast to the few that had antibacterial activity (29.9%). A high genetic diversity was made evident by the finding of many different crystal shapes and various combinations of shapes within a single isolate (in 58.4% of the isolates). Also, over 50% of the isolates harbored cry1, …
Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules …
2015
In Tribolium castaneum larvae we have demonstrated by RNA interference knockdown that the Bacillus thuringiensis Cry3Ba toxin receptors Cadherin-like and Sodium solute symporter proteins are also functional receptors of the less active Cry3Aa toxin. Differences in susceptibility to B. thuringiensis infection might not only rely on toxin-receptor interaction but also on host defense mechanisms. We compared the expression of the immune related genes encoding Apolipophorin-III and two antimicrobial peptides, Defensin3 and Defensin2 after B. thuringiensis challenge. All three genes were up-regulated following Cry3Ba spore-crystal intoxication whereas only Defensins gene expression was induced u…
Domain shuffling between Vip3Aa and Vip3Ca: chimera stability and insecticidal activity against European, American, African, and Asian pests
2020
The bacterium Bacillus thuringiensis produces insecticidal Vip3 proteins during the vegetative growth phase with activity against several lepidopteran pests. To date, three different Vip3 protein families have been identified based on sequence identity: Vip3A, Vip3B, and Vip3C. In this study, we report the construction of chimeras by exchanging domains between Vip3Aa and Vip3Ca, two proteins with marked specificity differences against lepidopteran pests. We found that some domain combinations made proteins insoluble or prone to degradation by trypsin as most abundant insect gut protease. The soluble and trypsin-stable chimeras, along with the parental proteins Vip3Aa and Vip3Ca, were tested…
Binding analysis of Bacillus thuringiensis Cry1 proteins in the sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae).
2015
Sugarcane borer (Diatraea saccharalis, F.) is an important corn pest in South America and United States. The aim of the present study was to analyze the susceptibility and binding interactions of three Cry1A proteins and Cry1Fa in a Brazilian D. saccharalis population. The results showed that Cry1Ab was the most active, followed by Cry1Ac, Cry1Fa and Cry1Aa. All Cry1-biotinylated proteins tested bound specifically to the D. saccharalis brush border membrane vesicles (BBMV). Heterologous competition assays showed shared binding sites for all Cry1A proteins and another one shared by Cry1Fa and Cry1Ab. Thus, pyramiding Cry1Aa/Cry1Ac and Cry1F proteins would be a recommended strategy for managi…
Insecticidal Activity of Strains of Bacillus thuringiensis on Larvae and Adults of Bactrocera oleae Gmelin (Dipt. Tephritidae)
1999
The olive fly, Bactrocera oleae, is the key pest on olives in the Mediterranean area. The pest can destroy, in some cases, up to 70% of the olive production. Its control relies mainly on chemical treatments, sometimes applied by aircraft over vast areas, with their subsequent ecological and toxicological side effects. Bacillus thuringiensis is a spore-forming soil bacterium which produces a protein crystal toxic to some insects, including the orders of Lepidoptera, Diptera, and Coleoptera and other invertebrates. The aim of this study was to search for isolates toxic to B. oleae. Several hundred B. thuringiensis isolates were obtained from olive groves and olive presses in different areas o…
Activation of Bacillus thuringiensis Cry1I to a 50 kDa stable core impairs its full toxicity to Ostrinia nubilalis
2021
Abstract Bacillus thuringiensis Cry1I insecticidal proteins are structurally similar to other three-domain Cry proteins, although their size, activity spectrum, and expression at the stationary phase are unique among other members of the Cry1 family. The mode of action of Cry1 proteins is not completely understood but the existence of an activation step prior to specific binding is widely accepted. In this study, we attempted to characterize and determine the importance of the activation process in the mode of action of Cry1I, as Cry1Ia protoxin or its partially processed form showed significantly higher toxicity to Ostrinia nubilalis than the fully processed protein either activated with …
Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis
2007
Nine of the most common lepidopteran active Cry proteins from Bacillus thuringiensis have been tested for activity against Spodoptera exigua. Because of possible intraspecific variability, three laboratory strains (FRA, HOL, and MUR) have been used. Mortality assays were performed with the three strains. LC(50) values for the active toxins were determined to the FRA and the HOL strains, whereas susceptibility of the MUR strain was assessed using only two concentrations. The results showed that Cry1Ca, Cry1Da, and Cry1Fa were the most effective toxins with all strains. Cry1Ab was found effective for the HOL strain, but very little effective against FRA (6.5-fold) and MUR strains. Cry1Aa and …
Toxicity of five Cry proteins against the insect pest Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae).
2019
Abstract The beetle Acanthoscelides obtectus (Say) causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions, the susceptibility of A. obtectus to five coleopteran-specific Cry toxic proteins from Bacillus thuringiensis (Cry1Ba, Cry1Ia, Cry3Aa, Cry7Ab, and Cry23/37) was evaluated. After 30 days exposure, Cry proteins demonstrated high activity against A. obtectus adults (100% mortality). Proteins showed statistical differences in toxicity parameters compared to the control treatment, but the parameters were similar among them, and indicated that the final toxic effects can be observed after the 24th day. The toxic effects on A. obtectus larvae we…
Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dis…
2007
Binding analyses with denatured epithelial membrane proteins from Bt (Bacillus thuringiensis) demonstrated at least two kinds of proteins, APNs (aminopeptidases N) and cadherin-like proteins, as possible receptors for the Cry1A class of Bt toxins. Two alternative models have been proposed, both based on initial toxin binding to a cadherin-like protein, but one involving APN and the other not. We have used two Bombyx mori strains (J65 and Kin), which are highly susceptible to Cry1Ab, to study the role of these two types of receptors on Cry1Ab toxin binding and cytotoxicity by means of the inhibitory effect of antibodies. BBMVs (brush-border membrane vesicles) of strain J65 incubated with lab…
Mannose phosphate isomerase isoenzymes in Plutella xylostella support common genetic bases of resistance to Bacillus thuringiensis toxins in Llpidopt…
2001
ABSTRACT A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.