Search results for "Bacillus-subtilis"

showing 5 items of 5 documents

Direct pathway cloning and expression of the radiosumin biosynthetic gene cluster

2023

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-der…

11832 Microbiology and virologyIdentificationDiversityOrganic ChemistryBacillus-subtilis116 Chemical sciencesFresh-waterDNAProtease inhibitorsCyanobacteriaBiochemistryQualityNonribosomal peptidegeneettinen monimuotoisuusNatural-productsTrypsin-inhibitorPhysical and Theoretical Chemistrysyanobakteerit
researchProduct

The Agr communication system provides a benefit to the populations of Listeria monocytogenes in soil

2014

International audience; In this study, we investigated whether the Agr communication system of the pathogenic bacterium Listeria monocytogenes was involved in adaptation and competitiveness in soil. Alteration of the ability to communicate, either by deletion of the gene coding the response regulator AgrA (response-negative mutant) or the signal pro-peptide AgrD (signal-negative mutant), did not affect population dynamics in soil that had been sterilized but survival was altered in biotic soil suggesting that the Agr system of L. monocytogenes was involved to face the complex soil biotic environment. This was confirmed by a set of co-incubation experiments. The fitness of the response-negat…

Bacillus-subtilisMutantlcsh:QR1-502Genetic Fitnessmicrobial ecologymedicine.disease_causelcsh:MicrobiologyQuorum-sensing systemsOriginal Research ArticlePseudomonas-aeruginosaSoil Microbiology2. Zero hunger0303 health sciencesMutationeducation.field_of_studycompetitivenessMicrobiology and Parasitologycell communicationMicrobiologie et ParasitologiefitnessAgricultural sciences[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyInfectious DiseasesSoil microbiologyMicrobiology (medical)PopulationImmunologyLactobacillus-plantarum[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyBiologyMicrobiologyMicrobiologysoil03 medical and health sciences[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyBacterial ProteinsListeria monocytogenesmedicineAgr system;cell communication;competitiveness;fitness;Listeria monocytogenes;soil;biotic interaction;quorum-sensing systems;expression;farm environment;dairy farm;bacterial-populations;pseudomonas-aeruginosa;microbial world;lactobacillus-plantarum;staphylococcus-aureus;bacillus-subtilisStaphylococcus-aureuseducationGene030304 developmental biology[ SDV ] Life Sciences [q-bio]Bacterial-populations030306 microbiologybiotic interactionFarm environmentListeria monocytogenesResponse regulatorMutationDairy farmGenetic Fitnessmicrobial worldSciences agricolesAgr system
researchProduct

The Low-Affinity ATP Binding Site of the Escherichia coli SecA Dimer Is Localized at the Subunit Interface

1997

The homodimeric SecA protein is the ATP-dependent force generator in the Escherichia coli precursor protein translocation cascade. SecA contains two essential nucleotide binding sites (NBSs), i.e., NBS1 and NBS2 that hind ATP with high and low affinity, respectively. The photoactivatable bifunctional cross-linking agent 3'-arylazido-8-azidoadenosine 5'-triphosphate (diN(3)ATP) was used to investigate the spatial arrangement of the nucleotide binding sites of SecA, DiN(3)ATP is an authentic ATP analogue as it supports SecA-dependent precursor protein translocation and translocation ATPase, UV-induced photo-cross-linking of the diN(3)ATP-bound SecA results in the formation of stable dimeric s…

AzidesUltraviolet RaysProtein subunitATPaseDimerMutantPhotoaffinity LabelsBiologymedicine.disease_causeESSENTIAL COMPONENTenvironment and public healthBiochemistryBACILLUS-SUBTILISchemistry.chemical_compoundAdenosine TriphosphateBacterial ProteinsPROTON MOTIVE FORCEEscherichia colimedicinePRECURSOR PROTEIN TRANSLOCATIONNucleotideBinding siteEscherichia coliAdenosine Triphosphataseschemistry.chemical_classificationBinding SitesSecA ProteinsNucleotidesChemiosmosisEscherichia coli ProteinsMembrane Transport ProteinsPHOTOAFFINITY CROSS-LINKINGCross-Linking ReagentschemistryBiochemistryMEMBRANE-VESICLES REQUIRESPLASMA-MEMBRANE3'-ARYLAZIDO-BETA-ALANYL-8-AZIDO ATPCYTOPLASMIC MEMBRANEbiology.proteinPREPROTEIN TRANSLOCASEbacteriaDimerizationSEC Translocation ChannelsBiochemistry
researchProduct

Development of an Efficient In Vivo System (P-junc-TpaseIS(1223)) for Random Transposon Mutagenesis of Lactobacillus casei

2012

ABSTRACT The random transposon mutagenesis system P junc -TpaseIS 1223 is composed of plasmids pVI129, expressing IS 1223 transposase, and pVI110, a suicide transposon plasmid carrying the P junc sequence, the substrate of the IS 1223 transposase. This system is particularly efficient in Lactobacillus casei , as more than 10,000 stable, random mutants were routinely obtained via electroporation.

Transposable element[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesTn3 transposonLactobacillus casei[SDV]Life Sciences [q-bio]TransposasesVECTORGenetics and Molecular BiologyDELBRUECKII SUBSP BULGARICUSApplied Microbiology and BiotechnologyBACILLUS-SUBTILIS03 medical and health sciencesPlasmidEscherichia coliSTREPTOCOCCUS[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciencesTransposaseDNA Primers030304 developmental biologyGenetics0303 health sciencesEcologybiologyRandom030306 microbiologyINSERTION SEQUENCESElectroporationbiology.organism_classificationSleeping Beauty transposon systemMolecular biologyGENETRANSFORMATIONGROUP-BBlotting SouthernLacticaseibacillus caseiLactobacillusMutagenesisDNA Transposable ElementsbacteriaTransposon mutagenesisELECTROPORATIONPLASMIDPlasmidsFood ScienceBiotechnology
researchProduct

Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family

2017

AbstractWe introduce LytU, a short member of the lysostaphin family of zinc-dependent pentaglycine endopeptidases. It is a potential antimicrobial agent for S. aureus infections and its gene transcription is highly upregulated upon antibiotic treatments along with other genes involved in cell wall synthesis. We found this enzyme to be responsible for the opening of the cell wall peptidoglycan layer during cell divisions in S. aureus. LytU is anchored in the plasma membrane with the active part residing in the periplasmic space. It has a unique Ile/Lys insertion at position 151 that resides in the catalytic site-neighbouring loop and is vital for the enzymatic activity but not affecting the …

0301 basic medicineentsyymitantimicrobial compoundsPROTEINchemistry.chemical_compoundCatalytic DomainCELL-WALLBINDINGMultidisciplinaryACTIVE-SITEQRESISTANT STAPHYLOCOCCUS-AUREUSRHydrogen-Ion ConcentrationAnti-Bacterial AgentsZincBiochemistryMedicineHISTIDINESProtein BindingStaphylococcus aureusScienceenzymesBiologyCleavage (embryo)metalloproteinasesArticleCofactorBACILLUS-SUBTILISCell wallStructure-Activity Relationship03 medical and health sciencesEndopeptidasesProtein Interaction Domains and MotifsAmino Acid Sequencestaphylococciantimikrobiset yhdisteetBinding SitesLysostaphinCell MembraneActive siteIsothermal titration calorimetryPeriplasmic spaceVANCOMYCINstafylokokitmetalloproteinaasitMODEL030104 developmental biologyRESOLUTIONchemistryMutationProteolysisLysostaphinbiology.protein1182 Biochemistry cell and molecular biologyPeptidoglycanScientific Reports
researchProduct