Search results for "Band structure"

showing 10 items of 215 documents

Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

2014

We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the lowfrequency (electronic) dielectric constant e1 . Negative pressure coefficients of -8.8 × 10-2 GPa-1 and -14.8 × 10-2 GPa-1 are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed …

Materials scienceIndium nitridePhysics and Astronomy (miscellaneous)Condensed matter physicsBand gapHydrostatic pressureRefractive indexDielectricHigh pressureCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryBand gapPhononsCritical point phenomenaThin filmElectronic band structureRefractive indexWurtzite crystal structureApplied Physics Letters
researchProduct

Differences and Similarities between the Isotypic AntimonidesMFe1−xSb, ScCo1−xSb, andMNiSb (M=Zr, Hf)

1999

The new antimonides MFe{sub 1{minus}x}Sb can be synthesized by arc-melting of M, Fe, and MSb{sub 2} (M = Zr, Hf). All title compounds crystallize in the TiNiSi structure type (space group Pnma, Z = 4). The lattice parameters of the new phases of MFe{sub 1{minus}x}Sb, as obtained from the bulk samples of the nominal compositions MFeSb, are a = 681.4(1) pm, b = 417.87(7) pm, c = 740.3(1) pm for ZrFe{sub 1{minus}x}Sb and a = 674.0(1) pm, b = 412.0(2) pm, c = 729.7(2) pm for HfFe{sub 1{minus}x}Sb. Under the reaction conditions used, the occupancy factors of the iron position content of ZrFe{sub 1{minus}x}Sb does not exceed 68(1)% (i.e., x = 0.32(1)). Extended Hueckel calculations, performed on …

Materials scienceInorganic chemistryIntermetallicAb initioElectronic structureCrystal structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInorganic ChemistryMetalCrystallographyElectron diffractionvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumPhysical and Theoretical ChemistryElectronic band structureGround stateJournal of Solid State Chemistry
researchProduct

Direct observation of half-metallicity in the Heusler compound $Co_{2}MnSi$

2014

Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of () % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimen…

Materials sciencePhotoemission spectroscopyGeneral Physics and Astronomy02 engineering and technologyengineering.material01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Science0103 physical sciences010306 general physicsSpectroscopyElectronic band structureSpin-½MultidisciplinaryCondensed matter physicsSpintronicsSpin polarizationFermi energyGeneral Chemistry021001 nanoscience & nanotechnologyHeusler compound3. Good healthengineeringCondensed Matter::Strongly Correlated Electronsddc:5000210 nano-technology
researchProduct

Near band edge and defect emissions in wurtzite Cd0.025Mg0.10Zn0.875O nanocrystals

2021

Abstract We report on near band edge and local defects emissions in Cd0·025Mg0·10Zn0·875O (CdMgZnO) nanoparticles (NPs) as a function of temperature, where a strong temperature-dependent near-infrared emission around 1.7 eV (~730 nm) has been observed. The NPs were synthesized by a modified sol-gel method and were annealed at 750 °C after growing. The crystallographic parameters have been determined by 2-dimensional synchrotron x-ray diffraction (XRD) and conventional XRD analysis, confirming their growth within the wurtzite phase with a preferred orientation along the (101) plane and an apparent crystallite size of 52.72 ± 0.18 nm. This apparent crystallite size is consistent with the near…

Materials sciencePhotoluminescenceBand gapOrganic ChemistryAnalytical chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystalliteElectrical and Electronic EngineeringPhysical and Theoretical Chemistry0210 nano-technologyValence electronSpectroscopyElectronic band structureHigh-resolution transmission electron microscopySpectroscopyWurtzite crystal structureOptical Materials
researchProduct

<title>New aspect of light emission from silicon nanocrystals</title>

2003

Intensive light emission (photoluminescence) from silicon nanocrystals has been interpreted in literature as recombinative emission. It has been supposed that the band structure is "pseidodirect." The literature analysis presented in our paper shows that the band structure is indirect and therefore intensive recombinative emission is not possible. According to new aspect, a part of electrons reaches the second conduction subband due to Auger recombination. Then the intensive visible radiation could be caused by transitions of these electrons from the second to the first conduction subband. We have constructed continuity equations for the electron concentration in the first and the second co…

Materials sciencePhotoluminescenceSiliconAuger effectchemistry.chemical_elementElectronCondensed Matter::Mesoscopic Systems and Quantum Hall EffectThermal conductionsymbols.namesakechemistrysymbolsLight emissionAtomic physicsElectronic band structureLuminescenceSPIE Proceedings
researchProduct

Stiffer, Stronger and Centrosymmetrical Class of Pentamodal Mechanical Metamaterials

2019

Pentamode metamaterials have been used as a crucial element to achieve elastical unfeelability cloaking devices. They are seen as potentially fragile and not simple for integration in anisotropic structures due to a non-centrosymmetric crystalline structure. Here, we introduce a new class of pentamode metamaterial with centrosymmetry, which shows better performances regarding stiffness, toughness, stability and size dependence. The phonon band structure is calculated based on the finite element method, and the pentamodal properties are evaluated by analyzing the single band gap and the ratio of bulk and shear modulus. The Poisson&rsquo

Materials sciencePhysics::OpticsModulus02 engineering and technologyCloaking device01 natural scienceslcsh:TechnologyArticle[SPI.MAT]Engineering Sciences [physics]/MaterialsShear modulus0103 physical sciencesmedicineGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicslcsh:Microscopylcsh:QC120-168.85[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Condensed matter physicslcsh:QH201-278.5lcsh:TpentamodeIsotropyMetamaterialStiffness021001 nanoscience & nanotechnologyphonon band structureFinite element methodmechanical metamateriallcsh:TA1-2040Mechanical metamateriallcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringmedicine.symptom0210 nano-technologylcsh:Engineering (General). Civil engineering (General)centrosymmetricallcsh:TK1-9971
researchProduct

Ab initio LCAO study of the atomic, electronic and magnetic structures and the lattice dynamics of triclinic CuWO4

2013

Abstract The electronic, structural and phonon properties of antiferromagnetic triclinic CuWO 4 have been studied using the first-principles spin-polarized linear combination of atomic orbital (LCAO) calculations based on the hybrid exchange–correlation density functional (DFT)/Hartree–Fock (HF) scheme. In addition, the local atomic structure around both Cu and W atoms has been probed using extended X-ray absorption fine structure (EXAFS) spectroscopy. We show that, by using the hybrid DFT–HF functional, one can accurately and simultaneously describe the atomic structure (the unit cell parameters and the atomic fractional coordinates), the band gap and the phonon frequencies. In agreement w…

Materials sciencePolymers and PlasticsCondensed matter physicsMetals and AlloysAb initio02 engineering and technologyTriclinic crystal system021001 nanoscience & nanotechnologyFractional coordinates01 natural sciencesMolecular physicsElectronic Optical and Magnetic MaterialsAtomic orbitalddc:670Linear combination of atomic orbitalsAb initio quantum chemistry methods0103 physical sciencesPhysics::Atomic and Molecular ClustersCeramics and Composites010306 general physics0210 nano-technologySpectroscopyElectronic band structureActa Materialia
researchProduct

Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

2013

Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Gamma-point of the Brillouin zone (E0 gap) has been recently measured, E0 = 0.46 eV at low temperature. The electronic gap at the A point of the Brillouin zone (equivalent to the L point in the zinc-blende structure, E1) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band st…

Materials sciencePolymers and PlasticsFOS: Physical sciencesBiomaterialschemistry.chemical_compoundsymbols.namesakeCondensed Matter::Materials ScienceAb initio quantum chemistry methodsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electronic band structureWurtzite crystal structureCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::Otherbusiness.industryMetals and AlloysMaterials Science (cond-mat.mtrl-sci)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBrillouin zoneSemiconductorchemistryCrystal field theorysymbolsIndium arsenidebusinessRaman scattering
researchProduct

Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition

2019

Cu2O/ZnO:Al (AZO) and Cu2O/ZnO/AZO heterojunctions have been deposited on glass substrates by a unique three-step pulsed laser deposition process. The structural, optical, and electrical properties of the oxide films were investigated before their implementation in the final device. X-ray diffraction analysis indicated that the materials were highly crystallized along the c-axis. All films were highly transparent in the visible region with enhanced electrical properties. Atomic force and scanning electron microscopies showed that the insertion of a ZnO layer between the Cu2O and AZO films in the heterojunction enhanced the average grain size and surface roughness. The heterojunctions exhibi…

Materials scienceScanning electron microscopeOxideCu2O02 engineering and technology01 natural sciencesPulsed laser depositionchemistry.chemical_compoundElectronic Electrical and Electronic Engineering0103 physical sciencesMaterials ChemistrySurface roughnessElectrical and Electronic EngineeringElectronic band structurepulsed laser depositionLeakage (electronics)010302 applied physicsbusiness.industryOptical and Magnetic MaterialAZOHeterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsGrain sizeElectronic Optical and Magnetic Materialssolar cellchemistryZnOOptoelectronicsHeterojunction0210 nano-technologybusinessJournal of Electronic Materials
researchProduct

Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system

2021

The band structure of multilayer systems plays a crucial role for the ultrafast hot carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited electrons in a highly ordered Pb monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy with femtosecond visible light pulses, we show that the electron dynamics of the Pb/Ag(111) quantum well system is largely dominated by two types of scattering processes: (i) isotropic intraband scattering processes within the quantum well state (QWS) and (ii) isotropic interband sca…

Materials scienceScatteringBilayerPosition and momentum space02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsExcited state0103 physical sciencesMonolayerPhysics::Atomic and Molecular ClustersQuasiparticle010306 general physics0210 nano-technologyElectronic band structureQuantum wellPhysical Review B
researchProduct