Search results for "Band structure"

showing 10 items of 215 documents

First-principles investigation of the bulk and low-index surfaces ofMoSe2

2014

In the framework of density functional theory, the geometry, electronic structure, and magnetic properties of the bulk and low index surfaces of $\mathrm{Mo}{\mathrm{Se}}_{2}$ have been studied. We have carried out calculations with various exchange-correlation functionals to select one which is able to describe the van der Waals (vdW) interactions and gives the best geometry compared with experiments. The inclusion of the vdW forces, however, does not guarantee a reliable description for the geometry of this compound: some vdW functionals strongly overestimate the interlayer distance, similar to GGA functionals. Our investigation shows that the recently introduced optB86b-vdW functional yi…

PhysicsCondensed matter physicsBand gapElectronic structureCondensed Matter PhysicsSurface energyElectronic Optical and Magnetic MaterialsHybrid functionalsymbols.namesakePhysics::Atomic and Molecular ClusterssymbolsWork functionDensity functional theoryvan der Waals forceElectronic band structurePhysical Review B
researchProduct

Spin-layer locking of interlayer excitons trapped in moir\'e potentials

2019

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index, and layer index. Further, twisted TMD heterobilayers can form moir\'e patterns that modulate the electronic band structure according to atomic registry, leading to spatial confinement of interlayer exciton (IXs). Here we report the observation of spin-layer locking of IXs trapped in moir\'e potentials formed in a heterostructure of bilayer 2H-MoSe$_2$ and monolayer WSe$_2$. The phenomenon of locked electron spin and layer index leads to two quantum-confined IX species with distinct spin-…

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringBilayerExcitonStackingHeterojunction02 engineering and technologyGeneral Chemistry16. Peace & justice010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences0104 chemical sciencesMechanics of MaterialsMonolayerGeneral Materials Science0210 nano-technologySpin (physics)Electronic band structureQuantum
researchProduct

Electronic structure calculations forZnFe2O4

2011

Local density approximation was applied to scrutinize the electronic structure and magnetic properties of the spinel ferrite ${\mathrm{ZnFe}}_{2}{\mathrm{O}}_{4}$. Various cation distributions were established to obtain the ground state for the system. In magnetic crystals, the position of the atoms is not enough for symmetry determination. A structure prediction by decreasing the octahedral point group symmetry ${\mathrm{O}}_{h}$ of Fe to ${\mathrm{D}}_{4h}$, ${\mathrm{C}}_{4v}$, and ${\mathrm{C}}_{3v}$ was carried out. The effect of the exchange and correlation terms on the band structure of ${\mathrm{ZnFe}}_{2}{\mathrm{O}}_{4}$ was studied by the generalized gradient approximation $+$ th…

PhysicsCondensed matter physicsOctahedral symmetryElectronic structureMagnetic semiconductorSymmetry (geometry)Local-density approximationCondensed Matter PhysicsGround stateElectronic band structureElectronic Optical and Magnetic MaterialsSpin-½Physical Review B
researchProduct

Electronic structure studies ofBaFe2As2by angle-resolved photoemission spectroscopy

2009

We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of ${\text{BaFe}}_{2}{\text{As}}_{2}$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $\ensuremath{\Gamma}$ point and an electron pocket at each of the $X$ points. The topology of the pockets has been conclu…

PhysicsCondensed matter physicsPhotoemission spectroscopyInverse photoemission spectroscopyFermi levelAngle-resolved photoemission spectroscopyFermi surfaceElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeCondensed Matter::SuperconductivitysymbolsCondensed Matter::Strongly Correlated ElectronsElectronic band structurePseudogapPhysical Review B
researchProduct

Optical studies of gap, hopping energies, and the Anderson-Hubbard parameter in the zigzag-chain compoundSrCuO2

2001

We have investigated the electronic structure of the zig-zag ladder (chain) compound ${\mathrm{SrCuO}}_{2}$ combining polarized optical absorption, reflection, photoreflectance, and pseudo-dielectric-function measurements with the model calculations. These measurements yield an energy gap of 1.42 eV (1.77 eV) at 300 K along (perpendicular to) the Cu-O chains. We have found that the lowest-energy gap, the correlation gap, is temperature independent. The electronic structure of this oxide is calculated using both the local-spin-density approximation with gradient correction method and the tight-binding theory for the correlated electrons. The calculated density of electronic states for noncor…

PhysicsCondensed matter physicsZigzagComputer Science::Systems and ControlBand gapCondensed Matter::Strongly Correlated ElectronsStrongly correlated materialAbsorption (logic)ElectronElectronic structureAtomic physicsElectronic band structureSpin-½Physical Review B
researchProduct

Unraveling exciton dynamics in amorphous silicon dioxide: Interpretation of the optical features from 8 to 11 eV.

2011

Physical review / B 83, 174201 (2011). doi:10.1103/PhysRevB.83.174201

PhysicsCoupling constantAbsorption spectroscopyPhononExcitonSettore FIS/01 - Fisica SperimentaleQuantum yieldCondensed Matter Physics530Exciton dynamicElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceDelocalized electronamorphous silicon dioxideLattice (order)ddc:530absorption and reflectivity spectraAtomic physicsElectronic band structure
researchProduct

Analysis of broadband x-ray spectra of highly charged krypton from a microcalorimeter detector of an electron-beam ion trap

2001

Spectra of highly charged Kr ions, produced in an electron-beam ion trap (EBIT), have been recorded in a broad x-ray energy band (0.3 keV to 4 keV) with a microcalorimeter detector. Most of the spectral lines have been identified as transitions of B- to Al-like Kr. The transition energies have been determined with 0.2% uncertainty. A semi-empirical EBIT plasma model has been created to calculate a synthetic spectrum of highly charged Kr and to determine a charge state distribution of Kr ions inside the EBIT.

PhysicsDetectorKryptonchemistry.chemical_elementFizikai tudományokPlasmaCondensed Matter PhysicSpectral lineIonPhysics and Astronomy (all)Settore FIS/05 - Astronomia E AstrofisicaTermészettudományokchemistryPhysics::Atomic PhysicsIon trapAtomic physicsElectronic band structureMathematical PhysicsElectron beam ion trapStatistical and Nonlinear Physic
researchProduct

Sub-Diffractive Band-Edge Solitons in Bose-Einstein Condensates in Periodic Potentials

2006

A new type of matter wave diffraction management is presented that leads to sub-diffractive soliton-like structures. The proposed management technique uses two counter-moving, identical periodic potentials (e.g. optical lattices). For suitable lattice parameters a novel type of atomic band-gap structure appears in which the effective atomic mass becomes infinite at the lowest edge of an energy band. This way normal matter-wave diffraction (proportional to the square of the atomic momentum) is replaced by fourth-order diffraction, and hence the evolution of the system becomes sub-diffractive.

PhysicsDiffractionCondensed matter physicsBand gapFOS: Physical sciencesPhysics::OpticsAtomic masslaw.inventionCondensed Matter - Other Condensed MatterlawLattice (order)Matter waveElectronic band structureBose–Einstein condensateOther Condensed Matter (cond-mat.other)
researchProduct

Crystal symmetry and pressure effects on the valence band structure ofγ-InSe andε-GaSe: Transport measurements and electronic structure calculations

2005

This paper reports on Hall effect and resistivity measurements under high pressure up to 3--4 GPa in $p$-type $\ensuremath{\gamma}$-indium selenide (InSe) (doped with As, Cd, or Zn) and $\ensuremath{\epsilon}$-gallium selenide (GaSe) (doped with N or Sn). The pressure behavior of the hole concentration and mobility exhibits dramatic differences between the two layered compounds. While the hole concentration and mobility increase moderately and monotonously in $\ensuremath{\epsilon}$-GaSe, a large increase of the hole concentration near 0.8 GPa and a large continuous increase of the hole mobility, which doubled its ambient pressure value by 3.2 GPa, is observed in $\ensuremath{\gamma}$-InSe.…

PhysicsElectron mobilityValence (chemistry)Condensed matter physicsBand gap02 engineering and technologyElectronic structureCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSemimetalElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Science0103 physical sciencesDirect and indirect band gaps010306 general physics0210 nano-technologyElectronic band structurePhysical Review B
researchProduct

Notice of Removal: Stochastic generation of the phononic band structure of lossy and infinite crystals

2017

The concept of the band structure is central to the field of phononic crystals. Indeed, capturing the dispersion of Bloch waves — the eigenmodes of propagation in periodic media — gives invaluable information on allowed propagation modes, their phase and group velocities, local resonances, and band gaps. Band structures are usually obtained by solving an eigenvalue problem defined on a closed and bounded domain, which results in a discrete spectrum. There are at least two cases, however, that cannot be reduced to a simple eigenvalue problem: first, when materials showing dispersive loss are present and second, when the unit-cell extends beyond any bound, as in the case of phononic crystal o…

PhysicsField (physics)Band gapBounded functionQuantum mechanicsPhase (waves)Electronic band structureDispersion (water waves)Eigenvalues and eigenvectorsBloch wave2017 IEEE International Ultrasonics Symposium (IUS)
researchProduct