Search results for "Barrier"

showing 10 items of 678 documents

LRP1 mediates bidirectional transcytosis of amyloid-β across the blood-brain barrier.

2011

According to the "amyloid hypothesis", the amyloid-β (Aβ) peptide is the toxic intermediate driving Alzheimer's disease (AD) pathogenesis. Recent evidence suggests that the low density lipoprotein receptor-related protein 1 (LRP1) transcytoses Aβ out of the brain across the blood-brain barrier (BBB). To provide genetic evidence for LRP1-mediated transcytosis of Aβ across the BBB we analyzed Aβ transcytosis across primary mouse brain capillary endothelial cells (pMBCECs) derived from wild-type and LRP1 knock-in mice. Here, we show that pMBCECs in vitro express functionally active LRP1. Moreover, we demonstrate that LRP1 mediates transcytosis of [(125)I]-Aβ(1-40) across pMBCECs in both direct…

AgingMice 129 StrainEndogenyBiologyEndocytosisBlood–brain barrierchemistry.chemical_compoundMicemedicineAnimalsGene Knock-In TechniquesReceptorCells CulturedAmyloid beta-PeptidesGeneral NeuroscienceTumor Suppressor ProteinsMolecular biologyLRP1Peptide FragmentsBiochemistry of Alzheimer's diseaseCell biologyMice Inbred C57BLmedicine.anatomical_structurechemistryTranscytosisReceptors LDLBlood-Brain BarrierLow-density lipoproteinNeurology (clinical)Geriatrics and GerontologyTranscytosisLow Density Lipoprotein Receptor-Related Protein-1Developmental BiologyNeurobiology of aging
researchProduct

DFT study of N–H···O hydrogen bond between model dehydropeptides and water molecule

2013

The strength of the hydrogen bond formed between a water molecule and two α,β-dehydroalanine derivatives including Ac-ΔAla-NMe2 (1) and Ac-ΔAla-NHMe (2) in comparison with standard amino acid Ac-Ala-NMe2 (3) is studied by density functional theory (with M06-2X and B3LYP functionals). Calculations were conducted for two different conformations of the peptides: extended (C5) and bent (β) with polyproline II backbone dihedral angles. The obtained results show that both dehydro and standard peptides in bent conformation form stronger hydrogen bonds with water than in the extended ones. Moreover, due to higher polarity of the N–H group of α,β-dehydroalanine residues, the H-bond in their complexe…

Alaninehydrogen bondB3LYPHydrogen bondStereochemistryChemistryBent molecular geometryLow-barrier hydrogen bonddehydroamino acidsBiophysicsDihedral angleCondensed Matter PhysicsDFTM06-2XMoleculeDensity functional theoryPhysical and Theoretical ChemistryMolecular BiologyPolyproline helixMolecular Physics
researchProduct

The Effect of Electronic Properties of Anodized and Hard Anodized Ti and Ti6Al4V on Their Reactivity in Simulated Body Fluid

2022

The electronic properties of barrier and porous layers on Ti and Ti6Al4V were studied. Barrier anodic oxides grown to 40 V on Ti and on Ti6Al4V are both n-type semiconductors with a band gap of 3.3 eV and 3.4 eV respectively, in agreement with the formation of amorphous TiO2. Anodizing to 200 V at 20 mA cm−2 in calcium acetate and β-glycerol phosphate disodium pentahydrate leads to the formation of Ca and P containing porous films with a photoelectrochemical behaviour dependent on the metallic substrate. A band gap of 3.2 eV and the flat band potential of −0.5 V vs Ag/AgCl were measured for the porous oxide on Ti, while optical transitions at 2.15 eV and a significantly more positive flat b…

Aluminum alloyAnodic oxidationPorous layerGlycerol phosphateAnodizingFlat-band potentialBarrier layerOxide surface layerMaterials ChemistryElectrochemistryPentahydrateOxide surface layer Electrochemical Measurments AnodizingTernary alloyN-type semiconductorPorous oxideRenewable Energy Sustainability and the EnvironmentVanadium alloys Anodic oxideSimulated body fluids Electronic propertiesCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy gapSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemical MeasurmentsTitanium dioxideTitanium alloyBody fluidSubstrateCalcium acetate
researchProduct

Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+.

2006

Cationic amino acid (CAA) transport is brought about by two families of proteins that are found in various tissues: Cat (CAA transporter), referred to as system y+, and Bat [broad-scope amino acid (AA) transporter], which comprises systems b0,+, B0,+, and y+L. CAA traverse the blood-brain barrier (BBB), but experiments done in vivo have only been able to examine the BBB from the luminal (blood-facing) side. In the present study, plasma membranes isolated from bovine brain microvessels were used to identify and characterize the CAA transporter(s) on both sides of the BBB. From these studies, it was concluded that system y+was the only transporter present, with a prevalence of activity on the…

Amino Acid Transport System y+PhysiologyStereochemistryPolarity (physics)Endocrinology Diabetes and MetabolismBiological Transport ActiveBiologyBlood–brain barrierNitric OxidePhysiology (medical)CationsmedicineAnimalsAmino AcidsCells Culturedchemistry.chemical_classificationCationic polymerizationEndothelial CellsTransporterAmino acidmedicine.anatomical_structureBiochemistrychemistryBlood-Brain BarrierAmino Acid Transport Systems BasicCattleNitric Oxide SynthaseAmerican journal of physiology. Endocrinology and metabolism
researchProduct

Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach.

2017

A detailed study of the electronic properties of thin (< 20 nm) anodic TiO2 potentiostatically grown on titanium in two different solutions is presented. The results show that the nature of the anodizing solution affects the electronic properties of the anodic film and in particular the density of electronic state (DOS) distribution. Different DOS were derived from the experimental data analyzed according to the theory of amorphous semiconductor (a-SC) Schottky barrier. It is shown that the usual non-linear and frequency dependent Mott-Schottky plots are in agreement with expected theoretical behaviour of a-SC Schottky barrier. It is shown the importance of the DOS distribution in determini…

Amorphous semiconductorsEngineeringSettore ING-IND/23 - Chimica Fisica Applicatabusiness.industrySchottky barrieranodic TiO2 Thin Passive Film Amorphous Semiconductor Electrochemical Impedance Spectroscopy electronic properties theory of amorphous semiconductor (a-SC) Schottky barrierElectrical engineeringOptoelectronicsElectrolytebusinessCharacterization (materials science)
researchProduct

Cellular Prion Protein Participates in Amyloid-β Transcytosis across the Blood—Brain Barrier

2012

The blood—brain barrier (BBB) facilitates amyloid-β (Aβ) exchange between the blood and the brain. Here, we found that the cellular prion protein (PrPc), a putative receptor implicated in mediating Aβ neurotoxicity in Alzheimer's disease (AD), participates in Aβ transcytosis across the BBB. Using an in vitro BBB model, [125I]-Aβ1–40 transcytosis was reduced by genetic knockout of PrPc or after addition of a competing PrPc-specific antibody. Furthermore, we provide evidence that PrPc is expressed in endothelial cells and, that monomeric Aβ1–40 binds to PrPc. These observations provide new mechanistic insights into the role of PrPc in AD.

Amyloid βanimal diseasesBiologyBrief CommunicationBlood–brain barrierModels BiologicalMiceAlzheimer Diseasemental disordersmedicineAnimalsPrPC ProteinsPrion proteinReceptorCells CulturedAmyloid beta-PeptidesNeurotoxicitymedicine.diseaseMolecular biologyPeptide FragmentsIn vitronervous system diseasesCell biologymedicine.anatomical_structureNeurologyTranscytosisBlood-Brain BarrierGene Knockdown Techniquesbiology.proteinNeurology (clinical)AntibodyTranscytosisCardiology and Cardiovascular MedicineProtein BindingJournal of Cerebral Blood Flow &amp; Metabolism
researchProduct

Oxidative stress in Alzheimer’s Disease: Implications for Prevention and Therapy

2006

Oxidative stress is a marker of neurodegeneration and has been recently shown to be also involved in the early stages of the pathogenesis of various neurodegenerative disorders. In general, all biomolecules of the cell can be oxidized and thereby damaged. Consequently, the concept of neuroprotection by antioxidants has been developed. In many cases the direct scavanging of free radicals have been used as a strategy to prevent oxidative stress damage and a variety of physiological and synthetic antioxidant molecules have been identified and synthesized including the female sex homone estrogen. In Alzheimer’s Disease amyloid-β protein on its way to brain deposition can also induce oxidative c…

Amyloidbusiness.industryNeurodegenerationInflammationDNA oxidationBlood–brain barrierBioinformaticsmedicine.disease_causemedicine.diseaseProtein oxidationNeuroprotectionmedicine.anatomical_structuremedicinemedicine.symptombusinessOxidative stress
researchProduct

Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

2012

Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytome…

Apolipoprotein EDrugs and DevicesDrug Research and DevelopmentLipoproteinsMaterials Sciencelcsh:MedicinePlasma protein bindingBiologyBlood–brain barrierBiochemistryFlow cytometryApolipoproteins EMaterial by AttributeMiceApolipoproteins EDrug Delivery Systemsddc:570Cell Line TumormedicineAnimalsHumansNanotechnologyPharmacokineticsReceptorlcsh:ScienceBiologySerum AlbuminBrain DiseasesMultidisciplinaryMicroscopy Confocalmedicine.diagnostic_testlcsh:RBrainEndothelial CellsProteinsBiological TransportFlow CytometryCell biologymedicine.anatomical_structureBlood-Brain BarrierNanoparticles for drug delivery to the brainLDL receptorNanoparticlesMedicinelcsh:QProtein BindingResearch ArticleBiotechnologyPLoS ONE
researchProduct

Ultrastructural aspects of naturally occurring wound in the tunic of two ascidians: Ciona intestinalis and Styela plicata (Tunicata).

2015

Efficient wound healing is essential for all animals from insects to mammals. Ciona intestinalis and Styela plicata are solitary ascidians belonging to urochordates, a subphylum that occupies a key phylogenetic position as it includes the closest relative to vertebrates. Urochordate first physical barrier against invaders is the tunic, an extracellular matrix that is constantly exposed to all kinds of insults. Thus, when damage occurs, an innate immune response is triggered to eliminate impaired tissue and potentially pathogenic microbes, and restore tissue functionality. Ultrastructural aspects of the tunic in the wound healing process of two ascidians are described. In the injured areas, …

AscidianPopulationGeneral Physics and AstronomyZoologyWound healingExtracellular matrixStructural BiologyBotanyAscidians; Invertebrates; Wound healing; UltrastructureAnimalsGeneral Materials ScienceCiona intestinalisInvertebrateUrochordataeducationeducation.field_of_studyPhagocytesInnate immune systembiologyfungiCell Biologybiology.organism_classificationCiona intestinalisStyela plicataPhysical BarrierUltrastructureUltrastructureWound healingMicron (Oxford, England : 1993)
researchProduct

Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length

2013

International audience; Septins are a large, evolutionarily conserved family of GTPases that form hetero-oligomers and interact with the actin-based cytoskeleton and microtubules. They are involved in scaffolding functions, and form diffusion barriers in budding yeast, the sperm flagellum and the base of primary cilia of kidney epithelial cells. We investigated the role of septins in the primary cilium of retinal pigmented epithelial (RPE) cells, and found that SEPT2 forms a 1:1:1 complex with SEPT7 and SEPT9 and that the three members of this complex colocalize along the length of the axoneme. Similar to observations in kidney epithelial cells, depletion of cilium-localized septins by siRN…

AxonemeAxonemeMicrotubule-associated protein[SDV]Life Sciences [q-bio]DIFFUSION BARRIERTUBULINCell Cycle Proteinsmacromolecular substancesORGANIZATIONCYTOSKELETONBiologySeptinMicrotubulesRetinaCell Line03 medical and health sciences0302 clinical medicineMicrotubuleCiliogenesisHumansCiliaCytoskeletonMolecular BiologyAFFINITY-REGULATING KINASEActin030304 developmental biologyCILIOGENESIS0303 health sciencesPrimary ciliumCOMPLEXSperm flagellumCilium030302 biochemistry & molecular biologyColocalizationEpithelial CellsAnatomyCell BiologyActinsCell biology[SDV] Life Sciences [q-bio]MAMMALIAN SEPTINSMAP4CELLSbiological phenomena cell phenomena and immunityMicrotubule-Associated Proteins030217 neurology & neurosurgerySeptinsDevelopmental BiologyResearch Article
researchProduct