Search results for "Barrier"

showing 10 items of 678 documents

Dimethyl fumarate treatment after traumatic brain injury prevents depletion of antioxidative brain glutathione and confers neuroprotection.

2017

Dimethyl fumarate (DMF) is an immunomodulatory compound to treat multiple sclerosis and psoriasis with neuroprotective potential. Its mechanism of action involves activation of the antioxidant pathway regulator Nuclear factor erythroid 2-related factor 2 thereby increasing synthesis of the cellular antioxidant glutathione (GSH). The objective of this study was to investigate whether post-traumatic DMF treatment is beneficial after experimental traumatic brain injury (TBI). Adult C57Bl/6 mice were subjected to controlled cortical impact followed by oral administration of DMF (80 mg/kg body weight) or vehicle at 3, 24, 48, and 72 h after the inflicted TBI. At 4 days after lesion (dal), DMF-tr…

0301 basic medicineMaleTraumatic brain injuryDimethyl FumarateBrain damagePharmacologyBlood–brain barrierBiochemistryNeuroprotectionAntioxidantsLesion03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineBrain Injuries TraumaticmedicineAnimalsNeuroinflammationDimethyl fumarateGlutathionemedicine.diseaseGlutathioneNeuroprotectionMice Inbred C57BLDisease Models AnimalOxidative Stress030104 developmental biologymedicine.anatomical_structureNeuroprotective AgentsBiochemistrychemistryBlood-Brain Barriermedicine.symptom030217 neurology & neurosurgeryJournal of neurochemistry
researchProduct

Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

2018

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei (T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors (Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys–SOH) during crystallization. The P-glycoprotein efflux ratio was mea…

0301 basic medicineMaleTrypanosoma brucei rhodesienseSwineCathepsin LLactams MacrocyclicTrypanosoma bruceiCysteine Proteinase InhibitorsLigands01 natural sciencesCell LineCathepsin L03 medical and health sciencesStructure-Activity RelationshipIn vivoparasitic diseasesDrug DiscoveryHydrolaseAnimalsHumansIC50Binding SitesbiologyMolecular Structure010405 organic chemistryChemistryDrug RepositioningTrypanosoma brucei rhodesiensebiology.organism_classificationCysteine proteaseMolecular biologyTrypanocidal Agents0104 chemical sciencesRatsMice Inbred C57BLCysteine Endopeptidases030104 developmental biologyBlood-Brain Barrierbiology.proteinMolecular MedicineEffluxJournal of medicinal chemistry
researchProduct

Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension

2019

Uric acid (UA) is a promising protective treatment in ischaemic stroke, but the precise molecular targets underlying its in vivo beneficial actions remain unclear. High concentrations of UA inhibit angiogenesis of cultured endothelial cells via Krüppel-like factor 2 (KLF)-induced downregulation of vascular endothelial growth factor (VEGF), a pro-angiogenic mediator that is able to increase blood–brain barrier (BBB) permeability in acute stroke. Here, we investigated whether UA treatment after ischaemic stroke protects brain endothelial cell functions and modulates the KLF2-VEGF-A axis. Transient intraluminal middle cerebral artery (MCA) occlusion/reperfusion was induced in adult male sponta…

0301 basic medicineMaleVascular Endothelial Growth Factor AVascular endothelial growth factor-AAngiogenesisBiochemistryRats Inbred WKYAntioxidantschemistry.chemical_compound0302 clinical medicineRats Inbred SHRIschaemic strokeEvans BlueBlood-brain barrierBrainKrüppel-like factor 2Vascular endothelial growth factorEndothelial stem cellStrokeVascular endothelial growth factor Amedicine.anatomical_structureNeuroprotective AgentsTreatment OutcomeBlood-Brain Barrier030220 oncology & carcinogenesisHypertensioncardiovascular systemmedicine.symptommedicine.medical_specialtyKruppel-Like Transcription FactorsBrain damageBlood–brain barrierNeuroprotectionCell Line03 medical and health sciencesDouble-Blind MethodInternal medicinemedicineAnimalsHumanscardiovascular diseasesPharmacologybusiness.industryRatsUric Acid030104 developmental biologyEndocrinologychemistryEndothelium VascularAngiogenesisbusinessBiomarkers
researchProduct

Drosophila SMN2minigene reporter model identifies moxifloxacin as a candidate therapy for SMA

2018

Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conser…

0301 basic medicineMoxifloxacinDrug Evaluation PreclinicalSMN1BiologyBiochemistryAnimals Genetically ModifiedMuscular Atrophy Spinal03 medical and health sciencesExon0302 clinical medicineGenes ReporterGeneticsmedicineAnimalsHumansMolecular BiologyExonsSpinal muscular atrophyMotor neuronSMA*medicine.diseasenervous system diseasesCell biologySurvival of Motor Neuron 2 ProteinAlternative SplicingDisease Models AnimalDrosophila melanogaster030104 developmental biologymedicine.anatomical_structureCajal bodyBlood-Brain BarrierRNA splicing030217 neurology & neurosurgeryBiotechnologyMinigeneThe FASEB Journal
researchProduct

Lactate as a Metabolite and a Regulator in the Central Nervous System

2016

More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even invol…

0301 basic medicineNervous systemlactate transporterCentral nervous systemReviewBiologyBlood–brain barrierlactate receptorsNeuroprotectionCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicineSettore BIO/10 - Biochimicalactate receptormedicineAnimalsHumanslactate transportersPhysical and Theoretical ChemistryReceptorExerciselcsh:QH301-705.5Molecular BiologySpectroscopyOrganic ChemistryNeurodegenerationlactic acidBrainGeneral MedicineMetabolismblood-brain barriermedicine.diseaseComputer Science ApplicationsCitric acid cycle030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Biochemistrybrain metabolismActic acidexercise and lactateEnergy MetabolismNeuroscience030217 neurology & neurosurgerySignal Transductionactic acid; brain metabolism; lactate transporters; blood-brain barrier; lactate receptors; exercise and lactate
researchProduct

Melanoma Unknown Primary Brain Metastasis Treatment with ECHO-7 Oncolytic Virus Rigvir: A Case Report

2018

Melanoma is considered an aggressive malignancy with a tendency for forming metastasis in the brain. Less than 10% of all melanoma cases present with unknown primary tumor location. This diagnose is yet to be fully understood, because there are only theoretical assumptions about the nature of this disease. Melanoma brain metastases have many severe side effects and unfortunately, any disease related to the brain has limited therapeutic options due to the blood brain barrier. The course of the disease after completing a treatment course, and stopping the treatment, is complicated to predict and is difficult to obtain long-lasting remission. In this report we describe a female patient with un…

0301 basic medicineOncologyNasal cavityCancer Researchmedicine.medical_specialtyCentral nervous systemDiseaseMalignancyblood–brain barrierlcsh:RC254-282Metastasis03 medical and health sciences0302 clinical medicinemelanoma brain metastasisInternal medicinemedicineECHO-7 virusoncolytic virusbusiness.industryMelanomaintranasalmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensOncolytic virus030104 developmental biologymedicine.anatomical_structureOncologymelanoma unknown primary030220 oncology & carcinogenesisbusinessBrain metastasisFrontiers in Oncology
researchProduct

An update on intracerebral stem cell grafts.

2018

Introduction: Primary neurological disorders are notoriously debilitating and deadly, and over the past four decades stem cell therapy has emerged as a promising treatment. Translation of stem cell therapies from the bench to the clinic requires a better understanding of delivery protocols, safety profile, and efficacy in each disease. Areas covered: In this review, benefits and risks of intracerebral stem cell transplantation are presented for consideration. Milestone discoveries in stem cell applications are reviewed to examine the efficacy and safety of intracerebral stem cell transplant therapy for disorders of the central nervous system and inform design of translatable protocols for c…

0301 basic medicineOncologymedicine.medical_specialtyParkinson's diseaseTraumatic brain injurymedicine.medical_treatmentmulti-system atrophyNeuroprotection03 medical and health sciencesGraft vs Host Reaction0302 clinical medicineHuntington's diseaseCentral Nervous System DiseasesRisk FactorsInternal medicineMedicineAnimalsHumansPharmacology (medical)amyotrophic lateral sclerosiAmyotrophic lateral sclerosisStem cellbusiness.industryGeneral NeuroscienceMultiple sclerosistraumatic brain injuryStem-cell therapymedicine.diseasestroke030104 developmental biologyBlood-Brain Barriermultiple sclerosiParkinson’s diseaseneuroprotectionNeurology (clinical)Stem cellbusiness030217 neurology & neurosurgeryHuntington’s diseaseStem Cell TransplantationExpert review of neurotherapeutics
researchProduct

Changes in Placental Morphology and their Association with Embryonic Skin Development

2019

Abstract Histogenesis and organogenesis in mammals normally transpires in a hypoxic environment. Oxygen diffusing capacity is dependent on diffusion distance, which may vary with the thickness of placental barrier and with the level of tissue vascularity. Since the epidermis is avascular, its development fully depends on dermal blood vessels. Despite the large number of studies focusing on uteroplacental circulation and embryogenesis, it is clear that the current knowledge of how placental changes in pregnancy contribute to skin development is incomplete. The aim of this study was to evaluate the association between structural changes in the placental barrier and development of the integume…

0301 basic medicinePathologymedicine.medical_specialty030219 obstetrics & reproductive medicineMultidisciplinaryAngiogenesisScienceQIntegumentary systemTrophoblastAdipose tissueintegumentary systemplacental barrier03 medical and health sciences030104 developmental biology0302 clinical medicinemedicine.anatomical_structurePlacentaUteroplacental CirculationmedicineembryogenesisEpidermisReticular DermisProceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.
researchProduct

Aquaporins and Brain Tumors

2016

Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization …

0301 basic medicinePathologymedicine.medical_specialtyAngiogenesisAquaporinReviewBiologyBlood–brain barrieraquaporins (AQPs)Catalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesglioblastoma multiforme0302 clinical medicineEdemaGliomaSettore BIO/10 - Biochimicaaquaporins (AQPs); blood–brain barrier (BBB); brain tumors; extracellular vesicles (EVs); glioblastoma multiformemedicineBiomarkers TumorAnimalsHumansPhysical and Theoretical ChemistrySettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5Molecular BiologySpectroscopyTight junctionBrain NeoplasmsSettore MED/27 - NeurochirurgiaOrganic ChemistryCancerGeneral Medicinemedicine.diseaseblood–brain barrier (BBB)Computer Science ApplicationsEndothelial stem cell030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)lcsh:QD1-999Blood-Brain Barrierbrain tumorsmedicine.symptomextracellular vesicles (EVs)Glioblastoma030217 neurology & neurosurgerybrain tumor
researchProduct

A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature d…

2017

T-cell migration across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple scle rosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell-cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord micro…

0301 basic medicinePathologymedicine.medical_specialtyImmunologyCentral nervous systemexperimental autoimmune encephalomyelitis610 Medicine & healthblood–brain barrierBlood–brain barrier03 medical and health sciences0302 clinical medicineMethodsmedicineImmunology and Allergy610 Medicine &amp; healthtwo-photon intravital microscopybusiness.industrycervical spinal cord windowMultiple sclerosisExperimental autoimmune encephalomyelitis500 Sciencemedicine.diseaseSpinal cordExtravasationLumbar Spinal Cord030104 developmental biologymedicine.anatomical_structurebusinessT-cell migration030217 neurology & neurosurgeryIntravital microscopyFrontiers in Immunology
researchProduct