Search results for "Bas"
showing 10 items of 28787 documents
On the ‘expanded local mode’ approach applied to the methane molecule: isotopic substitution CH2D2←CH4
2011
On the basis of a compilation of the ‘expanded local mode’ model and the general isotopic substitution theory, sets of simple analytical relations between different spectroscopic parameters (harmonic frequencies, ωλ, anharmonic coefficients, x λμ, ro-vibrational coefficients, , different kinds of Fermi- and Coriolis-type interaction parameters) of the CH2D2 molecule are derived. All of them are expressed as simple functions of a few initial spectroscopic parameters of the mother, CH4, molecule. Test calculations with the derived isotopic relations show that, in spite of a total absence of initial information about the CH2D2 species, the numerical results of the calculations have a very good…
Coupled-Cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster
2011
Abstract Ab initio Coupled-Cluster calculations with single and double excitations and perturbative correction to the triple, CCSD(T), have been carried out for the high-spin electronic state, ( 5 A 2 ) , of the copper cluster Cu 4 in its tetrahedral arrangement. Like alkali metals clusters, tetrahedral Cu 4 presents a bound quintet state, i.e., a situation where all the valence electrons are unpaired. This rather exotic wavefunction, also known as no-pair bonding state, is examined in detail. The influence of the basis set is also analyzed, as well as the importance of the core correlation and the effect of the basis-set superposition errors.
Towards highly accurate ab initio thermochemistry of larger systems: benzene.
2011
The high accuracy extrapolated ab initio thermochemistry (HEAT) protocol is applied to compute the total atomization energy (TAE) and the heat of formation of benzene. Large-scale coupled-cluster calculations with more than 1500 basis functions and 42 correlated electrons as well as zero-point energies based on full cubic and (semi)diagonal quartic force fields obtained with the coupled-cluster singles and doubles with perturbative treatment of the triples method and atomic natural orbital (ANO) triple- and quadruple-zeta basis sets are presented. The performance of modifications to the HEAT scheme and the scaling properties of its contributions with respect to the system size are investiga…
Multiple vibrational resonances in the Raman spectra of liquid ethanes
1990
The Raman spectra of liquid ethane, ethane-d3 and ethane-d6 were recorded and analysed. The CH3 and CD3 stretching regions were computer resolved using Cauchy-Gaussian and Voigt functions to account for asymmetric band shapes. Multiple vibrational resonances were investigated using the wavenumbers and observed intensities in these regions. The developed basis functions show strong mixing of the levels in these regions. In general the resonances appear to be less strong in the liquid phase than reported in previous studies of the gaseous state. Some new assignments in the liquid-state spectra of ethanes could be suggested.
Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones
2012
A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerati…
Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble …
2015
Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles …
Dynamic Polarizability and Higher-Order Electric Properties of Fluorene, Carbazole, and Dibenzofuran
2019
Static electric properties, from the dipole moment to the second-hyperpolarizability tensor γ, of the 3-membered, isoelectronic ring molecules, fluorene (FL), carbazole (CR), and dibenzofuran (DBF), have been calculated at various levels of approximation. The electron correlation effects have been included at the coupled-cluster (CC) level, using CCSD and CC2 versions of the method. DFT calculations with the CAM-B3LYP functional have also been performed, and the results are compared to the CC values. The electric property-tailored Pol basis set and its more compact Z3Pol version have been employed in all static calculations. Differences between dipole polarizability values computed at the P…
Calculation of electronic g-tensors using coupled cluster theory.
2009
A scheme for the calculation of the electronic g-tensor at the coupled cluster (CC) level is presented. The reported implementation employs an effective one-electron spin-orbit operator, allows the inclusion of arbitrary excitations in the cluster operator, and offers various options concerning the treatment of orbital relaxation and choice of reference determinants. In addition, the use of gauge-including atomic orbitals (GIAOs) is possible to overcome the gauge origin problem. Benchmark calculations for the NH ((3)Sigma(-)) radical reveal the importance of electron correlation effects for the accurate prediction of the g-shift as well as the slow basis set convergence of such calculations…
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Dynamics of the excited-state hydrogen transfer in a (dG)·(dC) homopolymer: intrinsic photostability of DNA
2018
Multiscale molecular dynamics simulations reveal out-of-plane distortions that favour DNA photostability. A novel photostability mechanism involving four proton transfers and triggered by a nearby Na+ ion is also unveiled.