6533b7d9fe1ef96bd126cdf6
RESEARCH PRODUCT
Towards highly accurate ab initio thermochemistry of larger systems: benzene.
John F. StantonJürgen GaussJuana VázquezMichael E. HardingMihály Kállaysubject
010304 chemical physicsChemistryAb initioGeneral Physics and AstronomyBasis function010402 general chemistry01 natural sciences7. Clean energyStandard enthalpy of formation0104 chemical sciencesChemical thermodynamicsAb initio quantum chemistry methodsQuartic function0103 physical sciencesThermochemistryPhysics::Chemical PhysicsPhysical and Theoretical ChemistryAtomic physicsScalingdescription
The high accuracy extrapolated ab initio thermochemistry (HEAT) protocol is applied to compute the total atomization energy (TAE) and the heat of formation of benzene. Large-scale coupled-cluster calculations with more than 1500 basis functions and 42 correlated electrons as well as zero-point energies based on full cubic and (semi)diagonal quartic force fields obtained with the coupled-cluster singles and doubles with perturbative treatment of the triples method and atomic natural orbital (ANO) triple- and quadruple-zeta basis sets are presented. The performance of modifications to the HEAT scheme and the scaling properties of its contributions with respect to the system size are investigated. A purely quantum-chemical TAE and associated conservative error bar of 5463.0 ± 3.1 kJ mol(-1) are obtained, while the corresponding 95% confidence interval, based on a statistical analysis of HEAT results for other and related molecules, is ± 1.8 kJ mol(-1). The heat of formation of benzene is determined to be 101.5 ± 2.0 kJ mol(-1) and 83.9 ± 2.1 kJ mol(-1) at 0 K and 298.15 K, respectively.
year | journal | country | edition | language |
---|---|---|---|---|
2011-08-03 | The Journal of chemical physics |