Search results for "Bayesian inference"

showing 10 items of 120 documents

Does social capital matter for European regional growth?

2015

Abstract This paper analyzes the role of different elements of social capital in economic growth for a sample of 85 European regions during the period 1995–2008. Despite the remarkable progress that social capital and European regional economic growth literatures have experienced over the last two decades, initiatives combining the two are few, and entirely yet to come for the post-1990s period. Recent improvements in data availability allow this gap in the literature to be closed, since they enable the researcher to consider the traditionally disregarded Eastern and Central European (ECE) regions. This is particularly interesting, as they are all transition economies that recently joined t…

Economics and EconometricsEuropean regionsBayesian inferenceSample (statistics)Social mobilitySocial reproductionEconomySocial capitalEconomicsmedia_common.cataloged_instanceEconomic geographyEuropean unionBayesian paradigmFinancePeriod (music)Social trustEconomic growthSocial capitalmedia_common
researchProduct

Japan's FDI drivers in a time of financial uncertainty. New evidence based on Bayesian Model Averaging

2021

En este artículo analizamos los determinantes del stock de FDI saliente de Japón para el período 1996–2017. Este período es especialmente relevante ya que abarca un proceso de creciente globalización económica y dos crisis financieras. Para ello, consideramos un amplio conjunto de variables candidatas basadas en la teoría, así como en análisis empíricos previos. Nuestra muestra incluye un total de 27 países anfitriones. Seleccionamos las covariables utilizando una metodología basada en datos, el análisis Bayesian Model Averaging (BMA). Además, también analizamos si estos determinantes cambian según el grado de desarrollo (emergentes vs desarrollados) o las áreas geográficas (UE vs Asia Orie…

Economics and Econometricsfinancial developmentHorizontal and verticalforeign direct investmentSample (statistics)Foreign direct investmentBayesian inferenceEconomic globalization:CIENCIAS ECONÓMICAS [UNESCO]0502 economics and businessinstitutional qualityEconomicsEast Asia050207 economicsEmerging marketsStock (geology)040101 forestryFinancebusiness.industry05 social sciencesUNESCO::CIENCIAS ECONÓMICAS04 agricultural and veterinary sciencesjapangravitybayesian model averagingPolitical Science and International Relations0401 agriculture forestry and fisheriesbusinessFinanceJapan and the World Economy
researchProduct

Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling

2011

Abstract Urban drainage models are important tools used by both practitioners and scientists in the field of stormwater management. These models are often conceptual and usually require calibration using local datasets. The quantification of the uncertainty associated with the models is a must, although it is rarely practiced. The International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, has been working on the development of a framework for defining and assessing uncertainties in the field of urban drainage modelling. A part of that work is the assessment and comparison of different techniques generally used in the uncertainty assessm…

EngineeringEnvironmental Engineering* MCMCRainmedia_common.quotation_subjectBayesian probability* Parameter probability distributionBayesian inferencecomputer.software_genre* MICAsymbols.namesake* GLUEWater QualityStatistics* Bayesian inferenceComputer SimulationQuality (business)CitiesGLUEWaste Management and Disposal* Urban drainage modelWater Science and TechnologyCivil and Structural Engineeringmedia_common* SCEM-UALikelihood Functions* Multi-objective auto-calibrationSettore ICAR/03 - Ingegneria Sanitaria-Ambientalebusiness.industryEcological ModelingUncertaintyMarkov chain Monte CarloModels TheoreticalPollutionMarkov ChainsRunoff model* UncertaintieMetropolis–Hastings algorithmsymbolsProbability distribution* AMALGAMData miningbusinessMonte Carlo MethodcomputerAlgorithmsSoftware
researchProduct

Uncertainty estimation of a complex water quality model: The influence of Box–Cox transformation on Bayesian approaches and comparison with a non-Bay…

2012

Abstract In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised L…

EngineeringIntegrated urban drainage systemSettore ICAR/03 - Ingegneria Sanitaria-Ambientalebusiness.industryWastewater treatment plantBayesian probabilityBayesian inferencePower transformBayesian inferenceGeophysicsGeochemistry and PetrologyHomoscedasticityStatisticsWater-quality modellingEconometricsGeneralised Likelihood Uncertainty Estimation (GLUE)Sensitivity analysisReceiving water bodybusinessLikelihood functionGLUEUncertainty analysis
researchProduct

Bayesian inference analysis of the uncertainty linked to the evaluation of potential flood damage in urban areas.

2012

Flood damage in urbanized watersheds may be assessed by combining the flood depth–damage curves and the outputs of urban flood models. The complexity of the physical processes that must be simulated and the limited amount of data available for model calibration may lead to high uncertainty in the model results and consequently in damage estimation. Moreover depth–damage functions are usually affected by significant uncertainty related to the collected data and to the simplified structure of the regression law that is used. The present paper carries out the analysis of the uncertainty connected to the flood damage estimate obtained combining the use of hydraulic models and depth–damage curve…

Environmental EngineeringFlood mythComputer scienceCalibration (statistics)Bayesian probabilityProbabilistic logicUncertaintyBayes TheoremModels TheoreticalBayesian inferencecomputer.software_genreRegressionFloodsBayes' theoremData miningCitiescomputerWater Science and TechnologyWater science and technology : a journal of the International Association on Water Pollution Research
researchProduct

Deep Importance Sampling based on Regression for Model Inversion and Emulation

2021

Understanding systems by forward and inverse modeling is a recurrent topic of research in many domains of science and engineering. In this context, Monte Carlo methods have been widely used as powerful tools for numerical inference and optimization. They require the choice of a suitable proposal density that is crucial for their performance. For this reason, several adaptive importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e., an emulator), which mimics the posteri…

FOS: Computer and information sciencesComputer Science - Machine LearningImportance samplingComputer scienceMonte Carlo methodPosterior probabilityBayesian inferenceInferenceContext (language use)Machine Learning (stat.ML)02 engineering and technologyEstadísticaStatistics - ComputationMachine Learning (cs.LG)symbols.namesakeSurrogate modelStatistics - Machine LearningArtificial Intelligence0202 electrical engineering electronic engineering information engineeringAdaptive regressionEmulationElectrical and Electronic EngineeringModel inversionGaussian processComputation (stat.CO)EmulationApplied Mathematics020206 networking & telecommunicationsRemote sensingComputational Theory and MathematicsSignal Processingsymbols020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithmImportance sampling
researchProduct

Compressed Particle Methods for Expensive Models With Application in Astronomy and Remote Sensing

2021

In many inference problems, the evaluation of complex and costly models is often required. In this context, Bayesian methods have become very popular in several fields over the last years, in order to obtain parameter inversion, model selection or uncertainty quantification. Bayesian inference requires the approximation of complicated integrals involving (often costly) posterior distributions. Generally, this approximation is obtained by means of Monte Carlo (MC) methods. In order to reduce the computational cost of the corresponding technique, surrogate models (also called emulators) are often employed. Another alternative approach is the so-called Approximate Bayesian Computation (ABC) sc…

FOS: Computer and information sciencesComputer scienceAstronomyModel selectionBayesian inferenceMonte Carlo methodBayesian probabilityAerospace EngineeringAstronomyInferenceMachine Learning (stat.ML)Context (language use)Bayesian inferenceStatistics - ComputationComputational Engineering Finance and Science (cs.CE)remote sensingimportance samplingStatistics - Machine Learningnumerical inversionparticle filteringElectrical and Electronic EngineeringUncertainty quantificationApproximate Bayesian computationComputer Science - Computational Engineering Finance and ScienceComputation (stat.CO)IEEE Transactions on Aerospace and Electronic Systems
researchProduct

A Review of Multiple Try MCMC algorithms for Signal Processing

2018

Many applications in signal processing require the estimation of some parameters of interest given a set of observed data. More specifically, Bayesian inference needs the computation of {\it a-posteriori} estimators which are often expressed as complicated multi-dimensional integrals. Unfortunately, analytical expressions for these estimators cannot be found in most real-world applications, and Monte Carlo methods are the only feasible approach. A very powerful class of Monte Carlo techniques is formed by the Markov Chain Monte Carlo (MCMC) algorithms. They generate a Markov chain such that its stationary distribution coincides with the target posterior density. In this work, we perform a t…

FOS: Computer and information sciencesComputer scienceMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisBayesian inference01 natural sciencesStatistics - Computation010104 statistics & probabilitysymbols.namesakeArtificial IntelligenceStatistics - Machine Learning0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputation (stat.CO)Signal processingMarkov chainApplied MathematicsEstimator020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsSample spaceComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithm
researchProduct

Adaptive independent sticky MCMC algorithms

2018

In this work, we introduce a novel class of adaptive Monte Carlo methods, called adaptive independent sticky MCMC algorithms, for efficient sampling from a generic target probability density function (pdf). The new class of algorithms employs adaptive non-parametric proposal densities which become closer and closer to the target as the number of iterations increases. The proposal pdf is built using interpolation procedures based on a set of support points which is constructed iteratively based on previously drawn samples. The algorithm's efficiency is ensured by a test that controls the evolution of the set of support points. This extra stage controls the computational cost and the converge…

FOS: Computer and information sciencesMathematical optimizationAdaptive Markov chain Monte Carlo (MCMC)Monte Carlo methodBayesian inferenceHASettore SECS-P/05 - Econometrialcsh:TK7800-8360Machine Learning (stat.ML)02 engineering and technologyBayesian inference01 natural sciencesStatistics - Computationlcsh:Telecommunication010104 statistics & probabilitysymbols.namesakeAdaptive Markov chain Monte Carlo (MCMC); Adaptive rejection Metropolis sampling (ARMS); Bayesian inference; Gibbs sampling; Hit and run algorithm; Metropolis-within-Gibbs; Monte Carlo methods; Signal Processing; Hardware and Architecture; Electrical and Electronic EngineeringGibbs samplingStatistics - Machine Learninglcsh:TK5101-67200202 electrical engineering electronic engineering information engineeringComputational statisticsMetropolis-within-GibbsHit and run algorithm0101 mathematicsElectrical and Electronic EngineeringGaussian processComputation (stat.CO)MathematicsSignal processinglcsh:Electronics020206 networking & telecommunicationsMarkov chain Monte CarloMonte Carlo methodsHardware and ArchitectureSignal ProcessingSettore SECS-S/03 - Statistica EconomicasymbolsSettore SECS-S/01 - StatisticaStatistical signal processingGibbs samplingAdaptive rejection Metropolis sampling (ARMS)EURASIP Journal on Advances in Signal Processing
researchProduct

A Bayesian Multilevel Random-Effects Model for Estimating Noise in Image Sensors

2020

Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parame…

FOS: Computer and information sciencesMean squared errorC.4Computer scienceBayesian probabilityG.3ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONInference02 engineering and technologyBayesian inferenceStatistics - Applications0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringApplications (stat.AP)Electrical and Electronic EngineeringImage sensorI.4.1C.4; G.3; I.4.1Pixelbusiness.industryImage and Video Processing (eess.IV)020206 networking & telecommunicationsPattern recognitionStatistical modelElectrical Engineering and Systems Science - Image and Video ProcessingRandom effects modelNoise62P30 62P35 62F15 62J05Signal Processing020201 artificial intelligence & image processingComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftware
researchProduct