Search results for "Bayesian inference"

showing 10 items of 120 documents

Spatio-Temporal Modeling of Zika and Dengue Infections within Colombia

2018

The aim of this study is to estimate the parallel relative risk of Zika virus disease (ZVD) and dengue using spatio-temporal interaction effects models for one department and one city of Colombia during the 2015&ndash

RiskZika virus diseasemedicine.medical_specialtyHealth Toxicology and Mutagenesis030231 tropical medicinedisease mappinglcsh:MedicineColombiaBayesian inferenceArticleDisease OutbreaksDengue feverDengue03 medical and health sciencesSpatio-Temporal Analysis0302 clinical medicineStatisticsEpidemiologymedicineHumans030212 general & internal medicineCitiesEstimationModels StatisticalZika Virus InfectionPublic healthlcsh:RPublic Health Environmental and Occupational Healthintegrated nested Laplace approximationmedicine.diseaseBayesian modelingrelative riskGeographyRelative riskEpidemiological MonitoringTemporal modelingInternational Journal of Environmental Research and Public Health
researchProduct

Discretized Bayesian Pursuit – A New Scheme for Reinforcement Learning

2012

Published version of a chapter in the book: Advanced Research in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-31087-4_79 The success of Learning Automata (LA)-based estimator algorithms over the classical, Linear Reward-Inaction ( L RI )-like schemes, can be explained by their ability to pursue the actions with the highest reward probability estimates. Without access to reward probability estimates, it makes sense for schemes like the L RI to first make large exploring steps, and then to gradually turn exploration into exploitation by making progressively smaller learning steps. However, this behavior becomes counter-intuitive wh…

Scheme (programming language)Mathematical optimizationDiscretizationLearning automataComputer sciencebusiness.industryVDP::Mathematics and natural science: 400::Information and communication science: 420::Algorithms and computability theory: 422estimator algorithmsBayesian probabilityBayesian reasoninglearning automataEstimatorVDP::Technology: 500::Information and communication technology: 550discretized learningBayesian inferenceAction (physics)Reinforcement learningArtificial intelligencepursuit schemesbusinesscomputercomputer.programming_language
researchProduct

Solving Non-Stationary Bandit Problems by Random Sampling from Sibling Kalman Filters

2010

Published version of an article from Lecture Notes in Computer Science. Also available at SpringerLink: http://dx.doi.org/10.1007/978-3-642-13033-5_21 The multi-armed bandit problem is a classical optimization problem where an agent sequentially pulls one of multiple arms attached to a gambling machine, with each pull resulting in a random reward. The reward distributions are unknown, and thus, one must balance between exploiting existing knowledge about the arms, and obtaining new information. Dynamically changing (non-stationary) bandit problems are particularly challenging because each change of the reward distributions may progressively degrade the performance of any fixed strategy. Alt…

Scheme (programming language)Mathematical optimizationOptimization problemComputer scienceBayesian probabilityVDP::Technology: 500::Information and communication technology: 550Kalman filterBayesian inferenceMulti-armed banditVDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425computerThompson samplingOptimal decisioncomputer.programming_language
researchProduct

Thompson Sampling Guided Stochastic Searching on the Line for Adversarial Learning

2015

The multi-armed bandit problem has been studied for decades. In brief, a gambler repeatedly pulls one out of N slot machine arms, randomly receiving a reward or a penalty from each pull. The aim of the gambler is to maximize the expected number of rewards received, when the probabilities of receiving rewards are unknown. Thus, the gambler must, as quickly as possible, identify the arm with the largest probability of producing rewards, compactly capturing the exploration-exploitation dilemma in reinforcement learning. In this paper we introduce a particular challenging variant of the multi-armed bandit problem, inspired by the so-called N-Door Puzzle. In this variant, the gambler is only tol…

Scheme (programming language)business.industryComputer scienceBayesian probabilityBayesian inferenceMulti-armed banditLine (geometry)Reinforcement learningArtificial intelligenceRepresentation (mathematics)businessThompson samplingcomputercomputer.programming_language
researchProduct

Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering

2021

Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the el…

Semileptonic decaydata analysis methodParticle physicsBayesian probabilityFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Bayesian inferenceBayesian01 natural sciencesMeasure (mathematics)statistics: Bayesianmass: scaleHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesCalibrationneutrino: massSensitivity (control systems)Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsElectroweak InteractionProbability and statisticssemileptonic decaycalibrationsensitivityneutrino: nuclear reactorHigh Energy Physics - Phenomenologymass: calibration[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics - Data Analysis Statistics and ProbabilityspectralHigh Energy Physics::ExperimentNeutrinoData Analysis Statistics and Probability (physics.data-an)[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Symmetries
researchProduct

Uncertainty estimation of a complex water quality model: GLUE vs Bayesian approach applied with Box – Cox transformation

2010

In urban drainage modelling, uncertainty analysis is of undoubted necessity; however, several methodological aspects need to be clarified and deserve to be investigated in the future, especially in water quality modelling. The use of the Bayesian approach to uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling estimates. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like GLUE. One crucial point in the application of Bayesian methods is the formulation of a likelihood function that is conditioned by the hypotheses …

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleBayesian inference Environmental modelling GLUE Integrated urban drainage systems Receiving water body Wastewater treatment plant.Settore ICAR/02 - Costruzioni Idrauliche E Marittime E Idrologia
researchProduct

A Generalized Missing-Indicator Approach to Regression with Imputed Covariates

2011

We consider estimation of a linear regression model using data where some covariate values are missing but imputations are available to fill in the missing values. This situation generates a tradeoff between bias and precision when estimating the regression parameters of interest. Using only the subsample of complete observations does not cause bias but may imply a substantial loss of precision because the complete cases may be too few. On the other hand, filling in the missing values with imputations may cause bias. We provide the new Stata command gmi, which handles such tradeoff by using either model reduction or Bayesian model averaging techniques in the context of the generalized miss…

Settore SECS-P/05Computer scienceSettore SECS-P/05 - EconometriaMissing dataBayesian inferenceRegressiongmi missing covariates imputation bias–precision tradeoff model reduction model averagingMathematics (miscellaneous)CovariateLinear regressionStatisticsEconometricsStatistics::MethodologyImputation (statistics)Settore SECS-P/01 - Economia PoliticaThe Stata Journal: Promoting communications on statistics and Stata
researchProduct

Aerial Spectrum Surveying: Radio Map Estimation with Autonomous UAVs

2020

Radio maps are emerging as a popular means to endow next-generation wireless communications with situational awareness. In particular, radio maps are expected to play a central role in unmanned aerial vehicle (UAV) communications since they can be used to determine interference or channel gain at a spatial location where a UAV has not been before. Existing methods for radio map estimation utilize measurements collected by sensors whose locations cannot be controlled. In contrast, this paper proposes a scheme in which a UAV collects measurements along a trajectory. This trajectory is designed to obtain accurate estimates of the target radio map in a short time operation. The route planning a…

Signal Processing (eess.SP)Situation awarenessComputer scienceActive learning (machine learning)business.industry05 social sciencesReal-time computing050801 communication & media studies020206 networking & telecommunications02 engineering and technologyBayesian inferenceComputer Science::Robotics0508 media and communicationsInterference (communication)Metric (mathematics)0202 electrical engineering electronic engineering information engineeringTrajectoryMaximum a posteriori estimationFOS: Electrical engineering electronic engineering information engineeringWirelessElectrical Engineering and Systems Science - Signal Processingbusiness
researchProduct

Particle Group Metropolis Methods for Tracking the Leaf Area Index

2020

Monte Carlo (MC) algorithms are widely used for Bayesian inference in statistics, signal processing, and machine learning. In this work, we introduce an Markov Chain Monte Carlo (MCMC) technique driven by a particle filter. The resulting scheme is a generalization of the so-called Particle Metropolis-Hastings (PMH) method, where a suitable Markov chain of sets of weighted samples is generated. We also introduce a marginal version for the goal of jointly inferring dynamic and static variables. The proposed algorithms outperform the corresponding standard PMH schemes, as shown by numerical experiments.

Signal processing010504 meteorology & atmospheric sciencesMarkov chainGeneralizationComputer scienceBayesian inferenceMonte Carlo method020206 networking & telecommunicationsMarkov chain Monte Carlo02 engineering and technologystate-space modelsTracking (particle physics)Bayesian inference01 natural sciencesParticle FilteringStatistics::Computationsymbols.namesake0202 electrical engineering electronic engineering information engineeringsymbolsParticle MCMCParticle filterMonte CarloAlgorithm0105 earth and related environmental sciences
researchProduct

What Does Objective Mean in a Dirichlet-multinomial Process?

2017

Summary The Dirichlet-multinomial process can be seen as the generalisation of the binomial model with beta prior distribution when the number of categories is larger than two. In such a scenario, setting informative prior distributions when the number of categories is great becomes difficult, so the need for an objective approach arises. However, what does objective mean in the Dirichlet-multinomial process? To deal with this question, we study the sensitivity of the posterior distribution to the choice of an objective Dirichlet prior from those presented in the available literature. We illustrate the impact of the selection of the prior distribution in several scenarios and discuss the mo…

Statistics and Probability05 social sciencesPosterior probabilityBayesian inference01 natural sciencesDirichlet distributionBinomial distribution010104 statistics & probabilitysymbols.namesake0502 economics and businessStatisticsObjective approachPrior probabilitysymbolsEconometricsMultinomial distribution0101 mathematicsStatistics Probability and UncertaintyBeta distribution050205 econometrics MathematicsInternational Statistical Review
researchProduct