Search results for "Benzamide"

showing 10 items of 199 documents

Chronic stress leads to epigenetic dysregulation in the neuropeptide-Y and cannabinoid CB1 receptor genes in the mouse cingulate cortex.

2017

Persistent stress triggers a variety of mechanisms, which may ultimately lead to the occurrence of anxiety- and depression-related disorders. Epigenetic modifications represent a mechanism by which chronic stress mediates long-term effects. Here, we analyzed brain tissue from mice exposed to chronic unpredictable stress (CUS), which induced impaired emotional and nociceptive behaviors. As endocannabinoid (eCB) and neuropeptide-Y (Npy) systems modulate emotional processes, we hypothesized that CUS may affect these systems through epigenetic mechanisms. We found reduced Npy expression and Npy type 1 receptor (Npy1r) signaling, and decreased expression of the cannabinoid type 1 receptor (CB1) …

0301 basic medicineCingulate cortexMalemedicine.medical_specialtyCannabinoid receptormedicine.medical_treatmentBiologyGyrus CinguliEpigenesis Genetic03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundMice0302 clinical medicineReceptor Cannabinoid CB1Internal medicinemental disordersmedicineAnimalsHumansChronic stressNeuropeptide YPharmacologyHistone deacetylase 2URB597Endocannabinoid systemhumanitiesMice Inbred C57BL030104 developmental biologyEndocrinologychemistryBenzamidesCannabinoidHistone deacetylaseCarbamates030217 neurology & neurosurgeryStress PsychologicalNeuropharmacology
researchProduct

NF-κB Is a Potential Molecular Drug Target in Triple-Negative Breast Cancers.

2017

Breast cancer continues to cause significant burden in global health morbidity and mortality. Triple-negative breast cancers (TNBCs) are highly aggressive with poor prognosis and are characterized by lack of expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor (Her-2). TNBCs are often resistant to cytotoxic chemotherapy and pose major difficulty in achieving personalized medicine due to their molecular heterogeneity. There is increasing evidence that the aberrant activation of nuclear factor (NF)-κB signaling is a frequent characteristic of TNBCs. We evaluated the effects of different potential NF-κB inhibitors, such as bisindolylmaleimide I (BI…

0301 basic medicineCurcuminEstrogen receptorTriple Negative Breast NeoplasmsPharmacologydiagnostics drug targets NF-kB signaling personalized medicine triple-negative breast cancerBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBreast cancerCell Line TumorMG132Progesterone receptorGeneticsmedicineGene silencingHumansPrecision MedicineMolecular BiologyTriple-negative breast cancerbusiness.industryCyclohexanonesNF-kappa BCancermedicine.disease030104 developmental biologychemistry030220 oncology & carcinogenesisBenzamidesProteasome inhibitorCancer researchMolecular MedicineFemalebusinessBiotechnologymedicine.drugSignal TransductionOmics : a journal of integrative biology
researchProduct

Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 in…

2020

HDAC6 is a crucial epigenetic modifier that plays a vital role in tumor progression and carcinogenesis due to its multiple biological functions. It is a unique member of class-II HDAC enzymes. It possesses two catalytic domains, which function independently of the overall enzyme activity. Up to date, there are only a few selective HDAC6 inhibitors with anti-cancer activity. In this study, 175,204 ligands obtained from the ZINC15 and OTAVAchemical databases were used for virtual drug screening against HDAC6. Molecular docking studies were performed for 100 selected compounds. Furthermore, the top 10 compounds obtained from docking were tested for their efficacy to inhibit the function of HDA…

0301 basic medicineHydroxybenzoic acidMicroscale thermophoresisDrug developmentApoptosisRM1-950NaphthalenesVirtual drug screeningHistone Deacetylase 6Flow cytometry03 medical and health scienceschemistry.chemical_compoundStructure-Activity Relationship0302 clinical medicineCell Line TumorDrug DiscoverymedicineHydroxybenzoatesHumansBenzamideCytotoxicityBenzoic acidCancerPharmacologychemistry.chemical_classificationLeukemiamedicine.diagnostic_testDose-Response Relationship DrugMolecular StructureChemistryMicroscale thermophoresisGeneral MedicineHDAC6Drug Resistance MultipleHistone Deacetylase InhibitorsMolecular Docking Simulation030104 developmental biologyEnzymeBiochemistryDocking (molecular)Drug Resistance Neoplasm030220 oncology & carcinogenesisBenzamidesEpigeneticsTherapeutics. PharmacologyDatabases ChemicalBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

Moving Towards Precision Urologic Oncology: Targeting Enzalutamide-resistant Prostate Cancer and Mutated Forms of the Androgen Receptor Using the Nov…

2017

Abstract Darolutamide (ODM-201) is a novel androgen receptor (AR) antagonist with a chemical structure distinctly different from currently approved AR antagonists that targets both wild-type and mutated ligand binding domain variants to inhibit AR nuclear translocation. Here, we evaluate the activity of darolutamide in enzalutamide-resistant castration resistant prostate cancer (CRPC) as well as in AR mutants detected in patients after treatment with enzalutamide, abiraterone, or bicalutamide. Darolutamide significantly inhibited cell growth and AR transcriptional activity in enzalutamide-resistant MR49F cells in vitro, and led to decreased tumor volume and serum prostate-specific antigen l…

0301 basic medicineMaleModels MolecularTime FactorsTranscription GeneticProtein ConformationProstate cancerchemistry.chemical_compoundMice0302 clinical medicineMolecular Targeted TherapyTumor BurdenDarolutamideReceptors Androgen030220 oncology & carcinogenesisBenzamidesmedicine.drugSignal Transductionmedicine.medical_specialtyBicalutamideUrologyPartial agonist03 medical and health sciencesStructure-Activity RelationshipIn vivoInternal medicineCell Line TumorNitrilesPhenylthiohydantoinmedicineAndrogen Receptor AntagonistsEnzalutamideAnimalsHumansCell ProliferationDose-Response Relationship DrugCell growthbusiness.industryProstatic Neoplasmsmedicine.diseaseXenograft Model Antitumor AssaysAndrogen receptor030104 developmental biologyEndocrinologychemistryDrug Resistance NeoplasmMutationCancer researchPyrazolesbusinessEuropean urology
researchProduct

Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibrobla…

2018

Abstract Background Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods After ethical approval was obtained, skin biopsies were co…

0301 basic medicineMalelcsh:Diseases of the musculoskeletal systemProton Pump InhibitorFibrosiCellular differentiationmedicine.medical_treatmentSystemic sclerosiFibrosisImmunology and AllergyMedicineMyofibroblastsskin and connective tissue diseasesCells CulturedSkinintegumentary systemCell DifferentiationMiddle AgedMesenchymal Stem CellBenzamidesSystemic sclerosisFemaleMyofibroblastResearch ArticleHumanAdultStromal cellImmunology03 medical and health sciencesYoung AdultRheumatologyBenzamideAntigens CDAntigens NeoplasmHumansGene silencingCell ProliferationMyofibroblastScleroderma Systemicbusiness.industryGrowth factorMesenchymal stem cellStromal CellMesenchymal Stem CellsProton Pump Inhibitorsmedicine.diseaseFibrosisCD248Settore MED/16 - Reumatologia030104 developmental biologyCancer researchStromal Cellslcsh:RC925-935CD248; Fibrosis; Systemic sclerosis; Rheumatology; Immunology and Allergy; ImmunologybusinessTransforming growth factor
researchProduct

ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans

2016

Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, f…

0301 basic medicineSmall interfering RNAMouseCD36BiochemistryMapkObesechemistry.chemical_compound0302 clinical medicinegpr120Cd36Mice Knockoutchemistry.chemical_classificationGene knockdownbiologyKinaseFatty AcidsTaste PerceptionGPR120Taste BudsLipidsProtein-tyrosine kinases3. Good healthTasteBenzamidesBiotechnologymedicine.medical_specialtyMAP Kinase Signaling SystemLinoleic acid[SDV.BC]Life Sciences [q-bio]/Cellular BiologyPreferenceFood Preferences03 medical and health sciencesCalhm1Internal medicineDietary-fatGeneticsmedicineAnimalsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium SignalingObesityMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyResearchDiphenylamineFatty acidDietary FatsMicroRNAs030104 developmental biologyEndocrinologychemistrybiology.proteinIon-channelCALHM1Src kinase030217 neurology & neurosurgery
researchProduct

CCDC 853880: Experimental Crystal Structure Determination

2012

Related Article: L.Kaufmann, E.V.Dzyuba, F.Malberg, N.L.Low, M.Groschke, B.Brusilowskij, J.Huuskonen, K.Rissanen, B.Kirchner, C.A.Schalley|2012|Org.Biomol.Chem.|10|5954|doi:10.1039/c2ob25196e

11'29'-Di-t-butyl-5'17'23'35'38'40'43'45'-octamethyl-7'15'25'33'-tetraazadispiro[cyclohexane-12'-heptacyclo-[32.2.2.2^36^.2^1619^.2^2124^.1^913^.1^2731^]hexatetracontane-20'1''-cyclohexane]-1'(36')3'5'9'(44')10'12'16'18'21'23'27'(39')28'30'34'37'-40'42'45'-octadecaene-8'14'26'32'-tetrone NN'-(ethane-12-diyl)-bis(N-methylbenzamide) chloroform solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

2-cinnamamido, 2-(3-phenylpropiolamido) and 2-(3-phenylpropanamido)benzamides: synthesis, antiproliferative activity and mechanism of action

2013

Several new 2-cinnamamido, 2-(3-phenylpropiolamido) and 2-(3-phenylpropanamido)benzamides were synthesized by stirring in pyridine the opportune acid chlorides with the appropriate anthranilamide derivatives. Some of the synthesized compounds were evaluated for their in vitro antiproliferative activity against a panel of 5 human cell lines (K562 human chronic myelogenous leukemia cells, MCF-7 breast cancer cells, HTC-116 and HT26 colon cancer cells and NCI H460 non-small cell lung cancer cells).

2-cinnamamidobenzamides 2-(3-phenylpropiolamido)benzamides 2-(3-phenylpropanamido)benzamides antiproliferative activity apoptosis.Settore BIO/19 - Microbiologia GeneraleSettore CHIM/08 - Chimica Farmaceutica
researchProduct

Synthesis and biological evaluation of some new 2-cinnamidobenzamides as potential antagonist of the HDM2-p53 protein-protein interactions

2008

2-cinnamidobenzamides/antiproliferative activitySettore CHIM/08 - Chimica Farmaceutica
researchProduct

Synthesis, antiproliferative activity and possible mechanism of action of novel 2-acetamidobenzamides bearing the 2-phenoxy functionality.

2015

Several new 2-(2-phenoxyacetamido)benzamides 17a-v, 21 and 22 were synthesized by stirring in pyridine the acid chlorides 16a-e and the appropriate5-R-4-R1-2-aminobenzamide 15a-e and initially evaluated in vitro for antiproliferative activity against the K562 (human chronic myelogenous leukemia) cell line. Some of synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). The most active compounds caused an arrest of K562 cells in the G0-G1 phase of cell cycle and induction of apoptos…

3003Clinical BiochemistryCellPharmaceutical ScienceAntineoplastic AgentsApoptosisAntiproliferative activityPharmacologyG0/G1 arrestBiochemistryArticle2-(2-Phenoxyacetamido)benzamideAntineoplastic AgentStructure-Activity RelationshipBenzamideSettore BIO/10 - BiochimicaCell Line TumorDrug DiscoveryG1 Phase Cell Cycle CheckpointK562 CellmedicineHumansMolecular BiologyCell ProliferationCell growthChemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryApoptosiCell cyclemedicine.diseaseCaspaseSettore CHIM/08 - Chimica FarmaceuticaG1 Phase Cell Cycle CheckpointsLeukemiamedicine.anatomical_structureMicroscopy FluorescenceCell cultureApoptosisCaspasesBenzamidesMolecular MedicineDrug Screening Assays AntitumorK562 CellsPro-caspase 3HumanK562 cellsChronic myelogenous leukemiaBioorganicmedicinal chemistry
researchProduct