Search results for "Benzoxazole"

showing 10 items of 20 documents

Unique regioselectivity in the C(sp3)-H α-alkylation of amines: the benzoxazole moiety as a removable directing group.

2014

The benzoxazol-2-yl- substituent was found to act as a removable activating and directing group in the Ir-catalyzed alkylation of C(sp(3))-H bonds adjacent to nitrogen in secondary amines. It can be easily introduced by oxidative coupling or by an SNAr reaction, and it can be removed by hydroxide or by hydride reduction. For 1,2,3,4-tetrahydroisoquinolines, activation exclusively takes place in the 3-position. A variety of activated as well as unactivated terminal olefins are suitable reaction partners.

StereochemistryHydrideOrganic ChemistrySubstituentRegioselectivityAlkylationBenzoxazoleBiochemistryMedicinal chemistrychemistry.chemical_compoundchemistryNucleophilic aromatic substitutionMoietyOxidative coupling of methanePhysical and Theoretical ChemistryOrganic letters
researchProduct

Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles

2021

Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2- aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with…

Models MolecularAmidinesAntineoplastic AgentsAminophenolsCrystallography X-Ray010402 general chemistry01 natural sciencesBiochemistryAmidinechemistry.chemical_compoundCell Line TumorHumansPinner reactionPhysical and Theoretical ChemistryDensity Functional TheoryCell ProliferationBenzoxazolesMolecular Structurebenzoxazoles ; amidino-functionalization ; Pinner reaction ; organic synthesis ; X-ray analysis ; antiproliferative activity ; DFT calculations010405 organic chemistryArylOrganic ChemistryBiological activityBenzoxazoleCondensation reactionCombinatorial chemistry0104 chemical sciences3. Good healthCarboximidatechemistrySurface modificationDrug Screening Assays AntitumorOrganic & Biomolecular Chemistry
researchProduct

Deprotonation of Benzoxazole and Oxazole Using Lithium Magnesates

2005

International audience; The first deprotonations of oxazole and benzoxazole using lithium magnesates are described. The reactions occurred in tetrahydrofuran at room temperature using 1/3 equiv of lithium tributylmagnesate. As 2-lithiooxazole and 2-lithiobenzoxazole, lithium tri(2-oxazolyl)magnesate and lithium tri(2-benzoxazolyl)magnesate very rapidly and completely isomerized to the more stable 2-(isocyano)enolate and 2-(isocyano)phenolate type structures, respectively, a result shown by NMR analysis. The isolation of 2-substituted oxazoles and benzoxazoles in medium to good yields after electrophilic trapping was interpreted in two ways:  (1) the equilibration between the open and closed…

010405 organic chemistryLithium bromide[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic Chemistrychemistry.chemical_element[CHIM.THER]Chemical Sciences/Medicinal Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.CATA]Chemical Sciences/CatalysisBenzoxazole[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistry0104 chemical scienceschemistry.chemical_compoundDeprotonationchemistryIntramolecular forceElectrophile[CHIM]Chemical SciencesLithium[CHIM.RADIO]Chemical Sciences/RadiochemistryTetrahydrofuranOxazole
researchProduct

ChemInform Abstract: Unique Regioselectivity in the C(sp3)-H α-Alkylation of Amines: The Benzoxazole Moiety as a Removable Directing Group.

2015

The benzoxazol-2-yl substituent is easily introduced by oxidative coupling or nucleophilic substitution and can be removed by hydroxide or by hydride reduction.

chemistry.chemical_compoundchemistryHydrideSubstituentNucleophilic substitutionRegioselectivityHydroxideMoietyGeneral MedicineAlkylationBenzoxazoleMedicinal chemistryChemInform
researchProduct

Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia.

2014

Chemical investigation of the sponge Dactylospongia metachromia afforded five new sesquiterpene aminoquinones (1-5), two new sesquiterpene benzoxazoles (6 and 7), the known analogue 18-hydroxy-5-epi-hyrtiophenol (8), and a known glycerolipid. The structures of all compounds were unambiguously elucidated by one- and two-dimensional NMR and by MS analyses, as well as by comparison with the literature. Compounds 1-5 showed potent cytotoxicity against the mouse lymphoma cell line L5178Y with IC50 values ranging from 1.1 to 3.7 μM. When tested in vitro for their inhibitory potential against 16 different protein kinases, compounds 5, 6, and 8 exhibited the strongest inhibitory activity against AL…

Pharmaceutical ScienceAntineoplastic AgentsMarine BiologySesquiterpeneAnalytical Chemistrychemistry.chemical_compoundInhibitory Concentration 50MiceDrug DiscoveryAnimalsHumansProtein kinase ACytotoxicityIC50Nuclear Magnetic Resonance BiomolecularProtein Kinase InhibitorsPharmacologyBenzoxazolesMolecular StructureKinaseOrganic ChemistryQuinonesIn vitroPoriferaComplementary and alternative medicineBiochemistrychemistryCell cultureMolecular MedicineDrug Screening Assays AntitumorSesquiterpenesProto-oncogene tyrosine-protein kinase SrcJournal of natural products
researchProduct

Crystal structure and Hirshfeld surface analysis of 2-[(1,3-benzoxazol-2-yl)sulfanyl]-N-(2-methoxyphenyl)acetamide

2019

Akkurt, Mehmet/0000-0003-2421-0929; Saylam, Merve/0000-0002-7602-4565

crystal structureHydrogen bondGeneral ChemistryCrystal structureDihedral angleCondensed Matter::Mesoscopic Systems and Quantum Hall Effecthydrogen bonding010402 general chemistry010403 inorganic & nuclear chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciences13-benzoxazole ring system0104 chemical scienceslcsh:ChemistryCrystaldimerschemistry.chemical_compoundCrystallographylcsh:QD1-999chemistryHirshfeld surface analysisGeneral Materials ScienceBenzeneAcetamideActa Crystallographica Section E Crystallographic Communications
researchProduct

Pharmacophore-Based Design of New Chemical Scaffolds as Translational Readthrough-Inducing Drugs (TRIDs)

2020

[Image: see text] Translational readthrough-inducing drugs (TRIDs) rescue the functional full-length protein expression in genetic diseases, such as cystic fibrosis, caused by premature termination codons (PTCs). Small molecules have been developed as TRIDs to trick the ribosomal machinery during recognition of the PTC. Herein we report a computational study to identify new TRID scaffolds. A pharmacophore approach was carried out on compounds that showed readthrough activity. The pharmacophore model applied to screen different libraries containing more than 87000 compounds identified four hit-compounds presenting scaffolds with diversity from the oxadiazole lead. These compounds have been s…

010405 organic chemistryChemistryOrganic ChemistryTranslational readthroughNonsense mutationHTVSnonsense mutationOxadiazoleBenzoxazoleRibosomal RNA01 natural sciencesBiochemistrySmall molecule0104 chemical sciencescystic fibrosis010404 medicinal & biomolecular chemistrychemistry.chemical_compoundBiochemistryDrug Discoverypremature termination codonsPharmacophoreDerivative (chemistry)Pharmacophore modeling
researchProduct

MTOR inhibitor-based combination therapies for pancreatic cancer

2018

Background: Although the mechanistic target of rapamycin (MTOR) kinase, included in the mTORC1 and mTORC2 signalling hubs, has been demonstrated to be active in a significant fraction of patients with pancreatic ductal adenocarcinoma (PDAC), the value of the kinase as a therapeutic target needs further clarification. Methods: We used Mtor floxed mice to analyse the function of the kinase in context of the pancreas at the genetic level. Using a dual-recombinase system, which is based on the flippase-FRT (Flp-FRT) and Cre-loxP recombination technologies, we generated a novel cellular model, allowing the genetic analysis of MTOR functions in tumour maintenance. Cross-species validation and pha…

therapeutic resistance0301 basic medicineCancer ResearchCell SurvivalMAP Kinase Signaling Systempancreatic cancerAntineoplastic AgentsContext (language use)Mechanistic Target of Rapamycin Complex 2mTORC1Mechanistic Target of Rapamycin Complex 1BiologymTORC2BortezomibMice03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansExtracellular Signal-Regulated MAP KinasesMechanistic target of rapamycinPI3K/AKT/mTOR pathwayBenzoxazolesKinaseMTORTOR Serine-Threonine Kinasesmedicine.diseaseddc:3. Good healthPancreatic NeoplasmsPyrimidines030104 developmental biologyOncologybiology.proteinCancer researchCamptothecinTOR Serine-Threonine KinasesPhosphatidylinositol 3-KinaseTranslational TherapeuticsProto-Oncogene Proteins c-aktBiologieCarcinoma Pancreatic Ductal
researchProduct

Synthesis and Structural Characterization of Substituted 2-Phenacylbenzoxazoles

2013

1 H and 13C NMR spectra of eleven 2-phenacylbenzoxazoles (ketimine form) show that their CDCl3-solutions contains also (Z)-2-(benzo[d]oxazol-2-yl)-1-phenylethenols (enolimine form). Intramolecular hydrogen bonding in the latter tautomer was found to be significantly weaker than that one in respective (Z)-2-(2-hydroxy-2-phenylvinyl)pyridines. Integrals of the 1 H NMR signals were used to evaluate the molar ratio of the tautomers. Strong electron-donating substituents were found to stabilize the ketimine tautomer. pKT (negative logarithm of the equilibrium constant, KT = [ketimine]/[enolimine]) was found to be linearly dependent on the Hammett substituent constant σ. The results of the MP2 ab…

Stereochemistry2-phenyacylbenzoxazoleSubstituent2-fenasyylibentsoksatsoli010402 general chemistry01 natural sciencesArticleCatalysisInorganic Chemistrylcsh:Chemistryresonance interactionchemistry.chemical_compoundAb initio quantum chemistry methods2-phenacylbenzoxazolePhysical and Theoretical Chemistryta116Molecular Biologylcsh:QH301-705.5SpectroscopyEquilibrium constanthydrogen bond010405 organic chemistryHydrogen bondOrganic Chemistryquantum-chemical calculationsGeneral MedicineCarbon-13 NMRTautomerNMR0104 chemical sciencesComputer Science ApplicationsCrystallographytautomerismchemistrylcsh:Biology (General)lcsh:QD1-999Intramolecular forceProton NMRsubstituent effect
researchProduct

Direct arylation of heterocycles: the performances of ferrocene-based polyphosphane ligands in palladium-catalyzed C-H bond activation

2010

International audience; The palladium-catalyzed direct arylation of alkylated- furan, thiophene, and thiazole and benzoxazole heterocycles with electronically and sterically deactivated bromoarenes was selectively and efficiently promoted by ferrocenyl polyphosphanes. In this C[BOND]H bond activation reaction of heteroaromatics, the performances of polydentate di-, tri-, and tetraphosphane ligands were compared, showing that the triphosphane 1,1′,2-tris(diphenylphosphino)-4-tert-butylferrocene 3 was the most effective for the coupling. The introduction of more electron-donating (iPr) or electron-withdrawing (furyl) groups on the phosphorus atoms did not improve the ligand performances. The …

Denticitychemistry.chemical_elementCH activation010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisInorganic Chemistrychemistry.chemical_compound[ CHIM.CATA ] Chemical Sciences/CatalysisThiopheneOrganic chemistryChelation[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryThiazoleheterocycles010405 organic chemistryLigandOrganic Chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistry[CHIM.CATA]Chemical Sciences/CatalysisBenzoxazolepalladiumhomogeneous catalysis0104 chemical sciencesTriphosphanechemistryligands effectsPalladium
researchProduct