Search results for "Beurling–Ahlfors"

showing 1 items of 1 documents

Quasiconformal Jordan Domains

2020

We extend the classical Carath\'eodory extension theorem to quasiconformal Jordan domains $( Y, d_{Y} )$. We say that a metric space $( Y, d_{Y} )$ is a quasiconformal Jordan domain if the completion $\overline{Y}$ of $( Y, d_{Y} )$ has finite Hausdorff $2$-measure, the boundary $\partial Y = \overline{Y} \setminus Y$ is homeomorphic to $\mathbb{S}^{1}$, and there exists a homeomorphism $\phi \colon \mathbb{D} \rightarrow ( Y, d_{Y} )$ that is quasiconformal in the geometric sense. We show that $\phi$ has a continuous, monotone, and surjective extension $\Phi \colon \overline{ \mathbb{D} } \rightarrow \overline{ Y }$. This result is best possible in this generality. In addition, we find a n…

primary 30l10QA299.6-433Mathematics::Dynamical SystemsMathematics - Complex VariablesMathematics::Complex VariablesHigh Energy Physics::PhenomenologycarathéodoryPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Mathematics::General Topologymetric surfacebeurling–ahlforsMetric Geometry (math.MG)quasiconformalsecondary 30c65 28a75 51f99Carathéodorymetriset avaruudetfunktioteoriaPhysics::Fluid DynamicsMathematics - Metric GeometryBeurling–AhlforsFOS: MathematicsmittateoriaComplex Variables (math.CV)AnalysisAnalysis and Geometry in Metric Spaces
researchProduct