Search results for "Binary"

showing 10 items of 833 documents

Phase equilibria in the ternary system isobutyl alcohol+isobutyl acetate+1-hexanol and the binary systems isobutyl alcohol+1-hexanol, isobutyl acetat…

2005

Abstract Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system isobutyl alcohol (IBA) + isobutyl acetate (IBAc) + 1-hexanol and two constituent binary systems: IBA + 1-hexanol and IBAc + 1-hexanol. The IBA + 1-hexanol system exhibits no deviation from ideal behaviour and IBAc + 1-hexanol system show lightly positive deviation from Raoult's law. The activity coefficients of the solutions were correlated with its composition by the Wilson, NRTL, UNIQUAC models. The ternary system is well predicted from binary interaction parameters. 1-Hexanol eliminates the IBA–IBAc binary azeotrope. However, the change of phase equilibria behaviour is small t…

Activity coefficientTernary numeral systemUNIQUACIsobutyl acetateChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyThermodynamicschemistry.chemical_compoundAzeotropeNon-random two-liquid modelPhysical chemistryBinary systemPhysical and Theoretical ChemistryHexanolFluid Phase Equilibria
researchProduct

Isobaric vapor–liquid equilibria for the binary systems 1-propyl alcohol+dipropyl ether and 1-butyl alcohol+dibutyl ether at 20 and 101.3kPa

2006

Abstract Isobaric vapor–liquid equilibrium measurements for the binary systems 1-propyl alcohol + dipropyl ether and 1-butyl alcohol + dibutyl ether are reported at 20 and 101.3 kPa. Both systems, which deviate positively from ideal behavior present a minimum boiling point azeotrope at both pressures, showing the azeotropic compositions a strong dependency on pressure. The activity coefficients and boiling points of the solutions were correlated with its composition by the Wilson, UNIQUAC, NRTL, and Wisniak–Tamir equations.

Activity coefficientUNIQUACChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyThermodynamicsEtherDibutyl etherchemistry.chemical_compoundBoiling pointAzeotropeNon-random two-liquid modelBinary systemPhysical and Theoretical ChemistryFluid Phase Equilibria
researchProduct

Effect of pressure and the capability of 2-methoxyethanol as a solvent in the behaviour of a diisopropyl ether–isopropyl alcohol azeotropic mixture

2007

Abstract Consistent vapour–liquid equilibrium data for the binary and ternary systems of diisopropyl ether + isopropyl alcohol at 30 and 101.3 kPa and diisopropyl ether + 2-methoxyethanol, isopropyl alcohol + 2-methoxyethanol and diisopropyl ether + isopropyl alcohol + 2-methoxyethanol at 101.3 kPa are reported. The activity coefficients of the solutions were correlated with its composition using the Wilson, NRTL and UNIQUAC models. It is shown that the models allow a very good prediction of the phase equilibrium of the ternary system using the pertinent parameters of the binary systems. Moreover, the effect of pressure and the entrainer capability of 2-methoxyethanol were studied.

Activity coefficientUNIQUACTernary numeral systemChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyIsopropyl alcoholchemistry.chemical_compoundNon-random two-liquid modelPhysical chemistryOrganic chemistryDiisopropyl etherBinary systemPhysical and Theoretical ChemistryIsopropylFluid Phase Equilibria
researchProduct

Phase equilibria involved in extractive distillation of dipropyl ether+1-propyl alcohol using 2-ethoxyethanol as entrainer

2007

Abstract Consistent vapour–liquid equilibrium data at 101.3 kPa have been determined for the ternary system dipropyl ether + 1-propyl alcohol + 2-ethoxyethanol and two constituent binary systems: dipropyl ether + 2-ethoxyethanol and 1-propyl alcohol + 2-ethoxyethanol. The dipropyl ether + 2-ethoxyethanol system shows positive deviations from ideal behaviour and 1-propyl alcohol + 2-ethoxyethanol system exhibits no deviation from ideal behaviour. The activity coefficients and the boiling points were correlated with their compositions by the Wilson, NRTL and UNIQUAC equations. It is shown that the models allow a very good prediction of the phase equilibria of the ternary system using the pert…

Activity coefficientUNIQUACTernary numeral systemGeneral Chemical EngineeringGeneral Physics and AstronomyThermodynamics2-Ethoxyethanolchemistry.chemical_compoundchemistryPhase (matter)Non-random two-liquid modelOrganic chemistryExtractive distillationBinary systemPhysical and Theoretical ChemistryFluid Phase Equilibria
researchProduct

Vapor–liquid equilibria in the ternary system dipropyl ether+1-propanol+1-pentanol and the binary systems dipropyl ether+1-pentanol, 1-propanol+1-pen…

2006

Abstract Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system dipropyl ether (DPE) + 1-propanol (PA) + 1-pentanol and two constituent binary systems: DPE + 1-pentanol and PA + 1-pentanol. The DPE + 1-pentanol system shows positive deviations from ideal behaviour and PA + 1-pentanol system exhibits no deviation from ideal behaviour. The activity coefficients and the boiling points were correlated with their compositions by the Wilson, NRTL, UNIQUAC and Wisniak–Tamir equations. It is shown that the models allow a very good prediction of the phase equilibria of the ternary system using the pertinent parameters of the binary systems. 1-Pentanol…

Activity coefficientUNIQUACTernary numeral systemGeneral Chemical EngineeringGeneral Physics and AstronomyThermodynamicsPropanolchemistry.chemical_compoundchemistryAzeotropeNon-random two-liquid modelExtractive distillationBinary systemPhysical and Theoretical ChemistryFluid Phase Equilibria
researchProduct

Vapor–liquid equilibria in the ternary system isobutyl alcohol+isobutyl acetate+butyl propionate and the binary systems isobutyl alcohol+butyl propio…

2005

Abstract Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system isobutyl alcohol (IBA) + isobutyl acetate (IBAc) + butyl propionate (BUP) and two constituent binary systems: IBA + BUP and IBAc + BUP. The IBA + BUP system show lightly positive deviation from Raoult's law and IBAc + BUP system exhibits no deviation from ideal behaviour. The activity coefficients of the solutions were correlated with its composition by the Wilson, NRTL, UNIQUAC models. The ternary system is very well predicted from binary interaction parameters. BUP eliminates the IBA–IBAc binary azeotrope. The change of phase equilibria behaviour is significant therefore this s…

Activity coefficientUNIQUACTernary numeral systemIsobutyl acetateChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyThermodynamicschemistry.chemical_compoundAzeotropeNon-random two-liquid modelOrganic chemistryBinary systemPhysical and Theoretical ChemistryUNIFACFluid Phase Equilibria
researchProduct

Vapor−Liquid Equilibria for the Binary Systems tert-Butyl Alcohol + Toluene, + Isooctane, and + Methylcyclohexane at 101.3 kPa

1998

Vapor-liquid equilibria were measured for binary systems of tert-butyl alcohol with toluene, isooctane, and methylcyclohexane at 101.3 kPa using a recirculating still. Experimental values of the vapor pressure of non-oxygenated pure components have been obtained. The accuracy of experimental measurements was ±0.01 K in temperature, ±0.01 kPa in pressure, and ±0.001 in mole fractions. The results are thermodynamically consistent according to the point-to-point consistency test. The data were correlated with five liquid-phase activity coefficients models (Margules, Van Laar, Wilson, NRTL, UNIQUAC).

Activity coefficientUNIQUACVapor pressureGeneral Chemical EngineeringThermodynamicsGeneral ChemistryTolueneGroup contribution methodchemistry.chemical_compoundchemistryNon-random two-liquid modelOrganic chemistryBinary systemMethylcyclohexaneJournal of Chemical & Engineering Data
researchProduct

Phase Equilibrium for the Esterification Reaction of Acetic Acid + Butan-1-ol at 101.3 kPa

2007

In this work, the thermodynamic behavior of catalytic esterification reaction equilibrium and vapor–liquid equilibria (VLE) for the quaternary reactive system acetic acid + butan-1-ol + butyl acetate + water and constituent binary systems acetic acid + butyl acetate, butan-1-ol + butyl acetate, and butan-1-ol + water have been determined at 101.3 kPa, and liquid–liquid equilibria (LLE) of the binary system butan-1-ol + water have also been determined. The esterification reaction rate of the acetic acid and butan-1-ol mixture is very slow. So, in this study, p-toluenesulfonic acid was selected as the catalyst to accelerate the chemical reaction. The measured VLE data were correlated by the N…

Activity coefficientchemistry.chemical_compoundAcetic acidUNIQUACChemistryGeneral Chemical EngineeringNon-random two-liquid modelOrganic chemistryGeneral ChemistryBinary systemButyl acetateChemical reactionCatalysisJournal of Chemical & Engineering Data
researchProduct

Isobaric Vapor−Liquid Equilibria of Trichloroethylene with 1-Butanol and 2-Butanol at 20 and 100 kPa

1996

Vapor−liquid equilibria for trichloroethylene + 1-butanol, and + 2-butanol are reported at 20 and 100 kPa. The two systems satisfy the point-to-point thermodynamic consistency test. Both systems show a positive deviation from ideality.

Activity coefficientchemistry.chemical_compoundBoiling pointchemistryTrichloroethyleneGeneral Chemical EngineeringAzeotropeButanolIsobaric processThermodynamicsGeneral ChemistryBinary system2-ButanolJournal of Chemical & Engineering Data
researchProduct

Vapor−Liquid Equilibria for the Binary Systems Isobutanol with m-Xylene, o-Xylene and p-Xylene at 101.3 kPa

1999

Vapor−liquid equilibria were measured for binary systems of isobutanol with m-xylene, o-xylene, and p-xylene at 101.3 kPa using a recirculating still. The accuracy of experimental measurements was ±0.1 K in temperature, ±0.01 kPa in pressure, and ±0.001 in mole fraction. The results were determined to be thermodynamically consistent according to the point-to-point consistency and Wisniak tests. All the systems show moderate positive deviations from ideality. The data were correlated with five liquid-phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, UNIQUAC).

Activity coefficientchemistry.chemical_compoundUNIQUACchemistryIsobutanolGeneral Chemical EngineeringButanolXyleneNon-random two-liquid modelThermodynamicsGeneral ChemistryBinary systemp-XyleneJournal of Chemical & Engineering Data
researchProduct