Search results for "Biogenesis"
showing 10 items of 150 documents
Human peroxin PEX3 is co-translationally integrated into the ER and exits the ER in budding vesicles
2015
The long-standing paradigm that all peroxisomal proteins are imported post-translationally into pre-existing peroxisomes has been challenged by the detection of peroxisomal membrane proteins (PMPs) inside the endoplasmic reticulum (ER). In mammals, the mechanisms of ER entry and exit of PMPs are completely unknown. We show that the human PMP PEX3 inserts co-translationally into the mammalian ER via the Sec61 translocon. Photocrosslinking and fluorescence spectroscopy studies demonstrate that the N-terminal transmembrane segment (TMS) of ribosome-bound PEX3 is recognized by the signal recognition particle (SRP). Binding to SRP is a prerequisite for targeting of the PEX3-containing ribosome•n…
Sex-based differences after a single bout of exercise on PGC1α isoforms in skeletal muscle: A pilot study
2020
To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mito…
Mg2+ binding triggers rearrangement of the IM30 ring structure, resulting in augmented exposure of hydrophobic surfaces competent for membrane binding
2018
The "inner membrane-associated protein of 30 kDa" (IM30), also known as "vesicle-inducing protein in plastids 1" (Vipp1), is found in the majority of photosynthetic organisms that use oxygen as an energy source, and its occurrence appears to be coupled to the existence of thylakoid membranes in cyanobacteria and chloroplasts. IM30 is most likely involved in thylakoid membrane biogenesis and/or maintenance, and has recently been shown to function as a membrane fusion protein in presence of Mg2+ However, the precise role of Mg2+ in this process and its impact on the structure and function of IM30 remains unknown. Here, we show that Mg2+ binds directly to IM30 with a binding affinity of ∼1 mm …
Revisiting the Warburg effect: historical dogma versus current understanding
2020
Contrary to Warburg's original thesis, accelerated aerobic glycolysis is not a primary, permanent and universal consequence of dysfunctional or impaired mitochondria compensating for poor ATP yield per mole of glucose. Instead, in most tumours the Warburg effect is an essential part of a 'selfish' metabolic reprogramming, which results from the interplay between (normoxic/hypoxic) hypoxia-inducible factor-1 (HIF-1) overexpression, oncogene activation (cMyc, Ras), loss of function of tumour suppressors (mutant p53, mutant phosphatase and tensin homologue (PTEN), microRNAs and sirtuins with suppressor functions), activated (PI3K-Akt-mTORC1, Ras-Raf-MEK-ERK-cMyc, Jak-Stat3) or deactivated (LKB…
A Janus-Faced IM30 Ring Involved in Thylakoid Membrane Fusion Is Assembled from IM30 Tetramers.
2017
Summary Biogenesis and dynamics of thylakoid membranes likely involves membrane fusion events. Membrane attachment of the inner membrane-associated protein of 30 kDa (IM30) affects the structure of the lipid bilayer, finally resulting in membrane fusion. Yet, how IM30 triggers membrane fusion is largely unclear. IM30 monomers pre-assemble into stable tetrameric building blocks, which further align to form oligomeric ring structures, and differently sized IM30 rings bind to membranes. Based on a 3D reconstruction of IM30 rings, we locate the IM30 loop 2 region at the bottom of the ring and show intact membrane binding but missing fusogenic activity of loop 2 mutants. However, helix 7, which …
Hsp60 in Skeletal Muscle Fiber Biogenesis and Homeostasis: From Physical Exercise to Skeletal Muscle Pathology
2018
Hsp60 is a molecular chaperone classically described as a mitochondrial protein with multiple roles in health and disease, participating to the maintenance of protein homeostasis. It is well known that skeletal muscle is a complex tissue, rich in proteins, that is, subjected to continuous rearrangements, and this homeostasis is affected by many different types of stimuli and stresses. The regular exercise induces specific histological and biochemical adaptations in skeletal muscle fibers, such as hypertrophy and an increase of mitochondria activity and oxidative capacity. The current literature is lacking in information regarding Hsp60 involvement in skeletal muscle fiber biogenesis and reg…
Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mit…
2016
Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomi…
A novel D2O tracer method to quantify RNA turnover as a biomarker of de novo ribosomal biogenesis, in vitro, in animal models, and in human skeletal …
2017
Current methods to quantify in vivo RNA dynamics are limited. Here, we developed a novel stable isotope (D2O) methodology to quantify RNA synthesis (i.e., ribosomal biogenesis) in cells, animal models, and humans. First, proliferating C2C12 cells were incubated in D2O-enriched media and myotubes ±50 ng/ml IGF-I. Second, rat quadriceps (untrained, n = 9; 7-wk interval-“like” training, n = 13) were collected after ~3-wk D2O (70 atom %) administration, with body-water enrichment monitored via blood sampling. Finally, 10 (23 ± 1 yr) men consumed 150-ml D2O followed by 50 ml/wk and undertook 6-wk resistance exercise (6 × 8 repetitions, 75% 1-repetition maximum 3/wk) with body-water enrichment mo…
A protein-RNA interaction atlas of the ribosome biogenesis factor AATF
2018
AbstractAATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as …
The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation
2017
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion c…