6533b836fe1ef96bd12a1573
RESEARCH PRODUCT
A Janus-Faced IM30 Ring Involved in Thylakoid Membrane Fusion Is Assembled from IM30 Tetramers.
Jennifer HeidrichRaoul HennigNina MorgnerNadja HellmannMichael SaurJürgen MarklDirk SchneiderKristiane RusitzkaPhoebe Youngsubject
0301 basic medicineModels MolecularChemistryPeripheral membrane proteinLipid bilayer fusionBiological membraneMembrane FusionThylakoidsTransmembrane protein03 medical and health sciencesCrystallographyChloroplast Proteins030104 developmental biologyMembraneStructural BiologyMembrane biogenesisLiposomesBiophysicsProtein MultimerizationLipid bilayerMolecular BiologyIntegral membrane proteinProtein Bindingdescription
Summary Biogenesis and dynamics of thylakoid membranes likely involves membrane fusion events. Membrane attachment of the inner membrane-associated protein of 30 kDa (IM30) affects the structure of the lipid bilayer, finally resulting in membrane fusion. Yet, how IM30 triggers membrane fusion is largely unclear. IM30 monomers pre-assemble into stable tetrameric building blocks, which further align to form oligomeric ring structures, and differently sized IM30 rings bind to membranes. Based on a 3D reconstruction of IM30 rings, we locate the IM30 loop 2 region at the bottom of the ring and show intact membrane binding but missing fusogenic activity of loop 2 mutants. However, helix 7, which has recently been shown to mediate membrane binding, was located at the oppossite, top side of IM30 rings. We propose that a two-sided IM30 ring complex connects two opposing membranes, finally resulting in membrane fusion. Thus, IM30-mediated membrane fusion requires a Janus-faced IM30 ring.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-14 | Structure (London, England : 1993) |