Search results for "Biomedical Engineering"

showing 10 items of 2020 documents

Comparison of platelet function tests for the in vitro quality assessment of platelet concentrates produced under real-life conditions.

2018

Platelet quality in different platelet concentrates (PCs) has been the subject of several studies. Nonetheless, there is a lack of robust data on the correlation and agreement among platelet function tests as a prerequisite for the association of PC functionality in vitro with platelet function in vivo post PC transfusion. The purpose of our study was to correlate a larger panel of platelet function assays in PCs and to assess whether the methods agree sufficiently and can be used interchangeably. Twelve apheresis platelet concentrates in plasma (APC), 16 pooled platelet concentrates in plasma (PPC), and 12 PPC in T-sol (PPCA) were examined on days 1 and 4 after production. PCs were tested …

0301 basic medicineBlood PlateletsPlatelet Function TestsQuality assessmentbusiness.industryPlatelet Countmedia_common.quotation_subjectmacromolecular substancesHematologyGeneral Medicine030204 cardiovascular system & hematologyIn Vitro Techniqueshumanities03 medical and health sciences030104 developmental biology0302 clinical medicinePlatelet function testMedicineHumansQuality (business)Plateletbusinessmedia_commonBiomedical engineeringPlatelets
researchProduct

2018

The bioactive coating of calcium phosphate cement (CPC) is a promising approach to enhance the bone-healing properties of bone substitutes. The purpose of this study was to evaluate whether coating CPCs with bone sialoprotein (BSP) results in increased bone formation. Forty-five female C57BL/6NRj mice with an average age of six weeks were divided into three groups. Either a BSP-coated or an uncoated three-dimensional plotted scaffold was implanted into a drilled 2.7-mm diameter calvarial defect, or the defect was left empty (control group; no CPC). Histological analyses revealed that BSP-coated scaffolds were better integrated into the local bone stock eight weeks after implantation. Bone v…

0301 basic medicineBone sialoproteinBone thicknessCalvarial defectbiologyChemistryMicro computed tomographytechnology industry and agriculturechemistry.chemical_elementmacromolecular substancesengineering.materialCalcium03 medical and health sciences030104 developmental biologystomatognathic systemCoatingengineeringbiology.proteinBioactive coatingGeneral Materials ScienceIncreased bone formationBiomedical engineeringMaterials
researchProduct

Effect of bone sialoprotein coated three-dimensional printed calcium phosphate scaffolds on primary human osteoblasts

2018

The combination of the two techniques of rapid prototyping 3D-plotting and bioactive surface functionalization is presented, with emphasis on the in vitro effect of Bone Sialoprotein (BSP) on primary human osteoblasts (hOBs). Our primary objective was to demonstrate the BSP influence on the expression of distinctive osteoblast markers in hOBs. Secondary objectives included examinations of the scaffolds' surface and the stability of BSP-coating as well as investigations of cell viability and proliferation. 3D-plotted calcium phosphate cement (CPC) scaffolds were coated with BSP via physisorption. hOBs were seeded on the coated scaffolds, followed by cell viability measurements, gene expressi…

0301 basic medicineBone sialoproteinMaterials scienceCellBiomedical Engineeringchemistry.chemical_element02 engineering and technologyCalciumCell morphologyBiomaterials03 medical and health sciencesfluids and secretionsstomatognathic systemIn vivomedicineViability assaybiologyOsteoblast021001 nanoscience & nanotechnologyCell biology030104 developmental biologymedicine.anatomical_structurechemistrybiology.proteinSurface modification0210 nano-technologyJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

CD34+cells seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model

2017

Bone tissue engineering (BTE) holds promise for managing the clinical problem of large bone defects. However, clinical adoption of BTE is limited due to limited vascularization of constructs, which could be circumvented by pre-cultivation of osteogenic and endothelial derived cells in natural-based polymer scaffolds. However, until now not many studies compared the effect of mono- and cocultures pre-seeded in collagen before implantation. We utilized a mouse calvarial defect model and compared five groups of collagen scaffolds: a negative control of a collagen scaffold alone, a positive control treated with BMP-7, monocultures of either human osteoblasts (hOBs) or CD34+ cells, and a cocultu…

0301 basic medicineCalvarial defectMaterials scienceAngiogenesisCd34 cellsBiomedical EngineeringCD34Bone healingCell biologyBiomaterials03 medical and health sciences030104 developmental biologyBone formationBone regenerationCollagen scaffoldBiomedical engineeringJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

Infrared microspectroscopic determination of collagen cross-links in articular cartilage

2017

Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples ( n = 27 ) were treated with threose to increase the collagen cross-linking whi…

0301 basic medicineCartilage ArticularGlycation End Products AdvancedcollagenSpectrophotometry InfraredPROTEOGLYCAN01 natural sciencesHigh-performance liquid chromatographychemistry.chemical_compoundBiomedicinsk laboratorievetenskap/teknologiPartial least squares regressionBiomedical Laboratory Science/Technologyinfrared spectroscopyPyridinolineThreoseChemistryMedicinsk bildbehandlingSTIFFNESSinfrapunaspektroskopiata3141AnatomyAtomic and Molecular Physics and OpticsDIFFUSIONElectronic Optical and Magnetic Materialsmedicine.anatomical_structuremultivariate analysisGLYCATION END-PRODUCTSNONENZYMATIC GLYCATIONBiomedical EngineeringInfrared spectroscopyI COLLAGENFORMALIN FIXATIONcross-linksOrthopaedicsBiomaterials03 medical and health sciencesmedicineAnimalsarticular cartilageFourier transform infrared spectroscopyPentosidineLeast-Squares Analysista217ChromatographyCartilage010401 analytical chemistry3126 Surgery anesthesiology intensive care radiology0104 chemical sciencesMedical Image Processing030104 developmental biologyOrtopedi1182 Biochemistry cell and molecular biologyCattleJournal of Biomedical Optics
researchProduct

Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures

2016

Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [s-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression…

0301 basic medicineCell typeMaterials scienceCell growthAngiogenesisBiomedical EngineeringOsteoblast02 engineering and technology021001 nanoscience & nanotechnologyUmbilical veinCell biologyBiomaterials03 medical and health sciences030104 developmental biologymedicine.anatomical_structureVasculogenesisCell cultureGene expressionmedicine0210 nano-technologyBiomedical engineeringJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering

2020

Recent developments in the field of biomaterials for tissue engineering open up new opportunities for regenerative therapy and prevention of progression of osteo-articular damage/impairment. A key advancement was the discovery of the regenerative activity of a group of physiologically occurring high-energy polymers, inorganic polyphosphates (polyP). These bio-polymers, in suitable bioinspired formulations, turned out to be capable of inducing proliferation and differentiation of mesenchymal stem cells into osteogenic or chondrogenic lineages through differential gene expression (morphogenetic activity). Unprecedented is the property of these biopolymers to deliver high-energy phosphate in t…

0301 basic medicineChemistryRegeneration (biology)CartilageMesenchymal stem cellBiomedical EngineeringNanotechnologyGeneral ChemistryGeneral MedicineChondrogenesisRegenerative medicineExtracellular matrix03 medical and health sciences030104 developmental biologymedicine.anatomical_structureTissue engineeringExtracellularmedicineGeneral Materials ScienceJournal of Materials Chemistry B
researchProduct

2017

Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived…

0301 basic medicineCollagen iCell typeBone substituteBiocompatibilityChemistryCell growthAngiogenesisOrganic Chemistry02 engineering and technologyGeneral Medicine021001 nanoscience & nanotechnologyCatalysisPorous scaffoldComputer Science ApplicationsInorganic Chemistry03 medical and health sciences030104 developmental biologyIn vitro studyPhysical and Theoretical Chemistry0210 nano-technologyMolecular BiologySpectroscopyBiomedical engineeringInternational Journal of Molecular Sciences
researchProduct

Motor-skill learning in an insect inspired neuro-computational control system

2017

In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The ad…

0301 basic medicineComputer scienceBiomedical Engineeringinsect brainNonlinear controlAdaptation and learning03 medical and health sciences0302 clinical medicineMotor controllerArtificial Intelligenceinsect mushroom bodiesHypothesis and TheoryMotor skillSpiking neural networkHexapodgoal-oriented behaviorControl systemslearningbusiness.industryControl systems; Neural networks; Adaptation and learning030104 developmental biologyControl systemRobotArtificial intelligencespiking neural controllersMotor learningbusiness030217 neurology & neurosurgeryNeural networksNeuroscience
researchProduct

Electroporation by concentric-type needle electrodes and arrays.

2017

Abstract The efficacy of genomic medicine depends on gene transfer efficiency. In this area, electroporation has been found to be a highly promising method for physical gene transfer. However, electroporation raises issues related to electrical safety, tissue damage, and the number of required wounds. Concentric-type needle electrodes seek to address these issues by using a lower bias (10 V), a single wound, fewer processing steps, and a smaller working area (≈ 10 mm 3 ), thus offering greater accuracy and precision. Moreover, the needle can be arrayed to simultaneously treat several target regions. This paper proposes a novel method using concentric-type needle electrodes to improve the ef…

0301 basic medicineComputer scienceBiophysicsGene transferGene deliveryConcentric03 medical and health sciencesMice0302 clinical medicineTissue damageElectrochemistryGenomic medicineAnimalsPhysical and Theoretical ChemistryElectrodesZebrafishbusiness.industryElectroporationGene Transfer TechniquesGeneral MedicineBiotechnology030104 developmental biologyElectroporationNeedles030220 oncology & carcinogenesisElectrodebusinessBiomedical engineeringBioelectrochemistry (Amsterdam, Netherlands)
researchProduct