Search results for "Bioprinting"

showing 10 items of 14 documents

Hydrogel‐Based 3D Bioprinting for Bone and Cartilage Tissue Engineering

2020

As a milestone in soft and hard tissue engineering, a precise control over the micropatterns of scaffolds has lightened new opportunities for the recapitulation of native body organs through three dimentional (3D) bioprinting approaches. Well-printable bioinks are prerequisites for the bioprinting of tissues/organs where hydrogels play a critical role. Despite the outstanding developments in 3D engineered microstructures, current printer devices suffer from the risk of exposing loaded living agents to mechanical (nozzle-based) and thermal (nozzle-free) stresses. Thus, tuning the rheological, physical, and mechanical properties of hydrogels is a promising solution to address these issues. Th…

0106 biological sciences3D bioprintingMaterials scienceTissue EngineeringTissue Scaffolds010401 analytical chemistryBioprintingHydrogelsNanotechnologyGeneral MedicineHard tissue01 natural sciencesApplied Microbiology and BiotechnologyCartilage tissue engineeringBone tissue engineering0104 chemical scienceslaw.inventionCartilageBody organslaw010608 biotechnologyPrinting Three-DimensionalSelf-healing hydrogelsMolecular MedicineCellular MorphologyBiotechnology Journal
researchProduct

Stem cell therapy. Old challenges and new solutions

2020

Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chro…

0301 basic medicineEngineeringmedicine.medical_treatmentbio-nanotechnologyregenerative medicineexosomesBio nanotechnologyRegenerative medicinestem cell therapystem cell transplantationEffective solution03 medical and health sciences0302 clinical medicinestem cellsBiological propertyGeneticsmedicine3D system3D systemshumansMolecular Biologybusiness.industry3D systems; bio-nanotechnology; bioprinting; exosomes; regenerative medicine; stem cell therapy; humans; regenerative medicine; stem cell transplantation; stem cellsGeneral MedicineStem-cell therapyExosome030104 developmental biology030220 oncology & carcinogenesisStem cellbusinessStem cell biologyNeurosciencebioprinting
researchProduct

Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.

2020

The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D str…

0303 health sciences3D bioprintingStimuli responsiveTissue EngineeringTissue ScaffoldsChemistryCell substrateBioprintingPharmaceutical ScienceNanotechnologyBiocompatible MaterialsHydrogels02 engineering and technologyMatrix (biology)021001 nanoscience & nanotechnologyBiocompatible materiallaw.invention03 medical and health sciencesTissue engineeringlawSelf-healing hydrogelsRegenerationViability assay0210 nano-technology030304 developmental biologyJournal of controlled release : official journal of the Controlled Release Society
researchProduct

New gellan gum-graft-poly(D,L-lactide-co-glycolide) copolymers as promising bioinks: Synthesis and characterization

2020

This research focused on the aim of tackling the urgent demand of printable biomaterials, hence we synthetized and characterized three gellan gum-graft-poly(d,l-lactide-co-glycolide) copolymers (GGm-PLGA a, b and c) which differed in the graft substitution degree. We investigated the effect of the polyester chain grafted onto hydrophilic backbone of gellan gum in terms of physicochemical properties and the ability of the system to print 3D cell laden constructs. In particular, we evaluated thermo-rheological, ionotropic crosslinking, shear thinning, swelling and stability properties of these copolymers and their derived biomaterials and findings related to the degree of functionalization. M…

Biocompatible Materials02 engineering and technologyBiochemistry03 medical and health scienceschemistry.chemical_compoundMicePolylactic Acid-Polyglycolic Acid CopolymerGraft copolymersStructural BiologyMaterials TestingmedicineCopolymerAnimalsMolecular Biology030304 developmental biologyMechanical Phenomena0303 health sciencesShear thinningTissue EngineeringChemistryPolysaccharides BacterialBioprintingGeneral Medicine3T3 Cells021001 nanoscience & nanotechnologyGellan gumPolyesterChemical engineeringSurface modificationPoly d l lactideInkPoly (DL-lactide-co-glycolide) (PLGA)Swellingmedicine.symptom0210 nano-technologyRheologyGellan gum (GG)
researchProduct

Three-Dimensional Bioprinting for Cartilage Tissue Engineering: Insights into Naturally-Derived Bioinks from Land and Marine Sources

2022

In regenerative medicine and tissue engineering, the possibility to: (I) customize the shape and size of scaffolds, (II) develop highly mimicked tissues with a precise digital control, (III) manufacture complex structures and (IV) reduce the wastes related to the production process, are the main advantages of additive manufacturing technologies such as three-dimensional (3D) bioprinting. Specifically, this technique, which uses suitable hydrogel-based bioinks, enriched with cells and/or growth factors, has received significant consideration, especially in cartilage tissue engineering (CTE). In this field of interest, it may allow mimicking the complex native zonal hyaline cartilage organiza…

Biomaterials3D bioprintingland sourcesBiomedical Engineeringcartilage tissue engineeringbioinkmarine sourcesadditive manufacturing
researchProduct

3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing …

2021

Abstract The three-dimensional (3D)-printing processes reach increasing recognition as important fabrication techniques to meet the growing demands in tissue engineering. However, it is imperative to fabricate 3D tissue units, which contain cells that have the property to be regeneratively active. In most bio-inks, a metabolic energy-providing component is missing. Here a formulation of a bio-ink is described, which is enriched with polyphosphate (polyP), a metabolic energy providing physiological polymer. The bio-ink composed of a scaffold (N,O-carboxymethyl chitosan), a hydrogel (alginate) and a cell adhesion matrix (gelatin) as well as polyP substantially increases the viability and the …

Biomedical EngineeringBioengineeringMatrix (biology)Biochemistrylaw.inventionBiomaterialsSOX2Tissue engineeringPolyphosphateslawCell adhesion3D bioprintingTissue EngineeringTissue ScaffoldsChemistryMesenchymal stem cellBioprintingMesenchymal Stem CellsGeneral MedicineCell biologybody regionsRUNX2Printing Three-DimensionalAlkaline phosphataseInkcirculatory and respiratory physiologyBiotechnologyBiofabrication
researchProduct

Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting.

2014

We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP • Ca2+-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO2 : CaO : P2O5 of 55 : 40 : 5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP …

Ceramicsfood.ingredientAlginateslcsh:MedicineSurgical and Invasive Medical ProceduresBiocompatible MaterialsGelatinMineralization (biology)BiochemistryHydrogel Polyethylene Glycol Dimethacrylatelaw.inventionCell Linechemistry.chemical_compoundfoodCalcification PhysiologicTissue engineeringlawMedicine and Health SciencesHumansBiomechanicsParticle Sizelcsh:ScienceSaos-2 cellsCell ProliferationMultidisciplinaryBone DevelopmentTissue EngineeringTissue ScaffoldsChemistryPolyphosphatelcsh:RBioprintingBiology and Life SciencesChemical engineeringBioactive glassSelf-healing hydrogelsGelatinNanoparticleslcsh:QBiomineralizationResearch ArticlePLoS ONE
researchProduct

Biocalcite, a multifunctional inorganic polymer: Building block for calcareous sponge spicules and bioseed for the synthesis of calcium phosphate-bas…

2014

Calcium carbonate is the material that builds up the spicules of the calcareous sponges. Recent results revealed that the calcium carbonate/biocalcite-based spicular skeleton of these animals is formed through an enzymatic mechanism, such as the skeleton of the siliceous sponges, evolutionarily the oldest animals that consist of biosilica. The enzyme that mediates the calcium carbonate deposition has been identified as a carbonic anhydrase (CA) and has been cloned from the calcareous sponge species Sycon raphanus. Calcium carbonate deposits are also found in vertebrate bones besides the main constituent, calcium phosphate/hydroxyapatite (HA). Evidence has been presented that during the init…

Materials scienceGeneral Physics and Astronomychemistry.chemical_elementMineralogyReview02 engineering and technologyCalciumlcsh:Chemical technologybonelcsh:Technologysponge03 medical and health scienceschemistry.chemical_compoundVateriteNanotechnologylcsh:TP1-1185General Materials SciencebiocalciteSycon raphanusElectrical and Electronic Engineeringlcsh:Sciencebone formation030304 developmental biologycalcareous spiculesCalcite0303 health sciencesbiologyCalcareous spongelcsh:T021001 nanoscience & nanotechnologybiology.organism_classificationlcsh:QC1-999NanoscienceSpongeCalcium carbonatechemistryChemical engineeringlcsh:Q0210 nano-technologybioprintingCalcareouslcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

An Inverse Thermogelling Bioink Based on an ABA-Type Poly(2-oxazoline) Amphiphile

2021

Hydrogels are key components in several biomedical research areas such as drug delivery, tissue engineering, and biofabrication. Here, a novel ABA-type triblock copolymer comprising poly(2-methyl-2-oxazoline) as the hydrophilic A blocks and poly(2-phenethyl-2-oxazoline) as the aromatic and hydrophobic B block is introduced. Above the critical micelle concentration, the polymer self-assembles into small spherical polymer micelles with a hydrodynamic radius of approx 8-8.5 nm. Interestingly, this specific combination of hydrophilic and hydrophobic aromatic moieties leads to rapid thermoresponsive inverse gelation at polymer concentrations above a critical gelation concentration (20 wt %) into…

Materials scienceHydrodynamic radiusPolymers and Plastics0206 medical engineering116 Chemical sciencesBioengineering02 engineering and technology010402 general chemistry01 natural sciencesMicelleBiomaterialsMiceAmphiphileMaterials ChemistryCopolymerAnimalsOxazoleschemistry.chemical_classificationTissue EngineeringBioprintingHydrogelsPolymer021001 nanoscience & nanotechnology020601 biomedical engineering0104 chemical sciencesChemical engineeringchemistryCritical micelle concentrationPrinting Three-DimensionalSelf-healing hydrogels0210 nano-technologyBiofabrication
researchProduct

3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication

2020

Vascularization in bone tissues is essential for the distribution of nutrients and oxygen, as well as the removal of waste products. Fabrication of tissue-engineered bone constructs with functional vascular networks has great potential for biomimicking nature bone tissue in vitro and enhancing bone regeneration in vivo. Over the past decades, many approaches have been applied to fabricate biomimetic vascularized tissue-engineered bone constructs. However, traditional tissue-engineered methods based on seeding cells into scaffolds are unable to control the spatial architecture and the encapsulated cell distribution precisely, which posed a significant challenge in constructing complex vascul…

Materials sciencebioinksReview02 engineering and technologyBone tissuelcsh:Technologylaw.invention03 medical and health sciencesbone regenerationvascularizationTissue engineeringlawmedicineGeneral Materials Sciencelcsh:MicroscopyBone regenerationlcsh:QC120-168.85030304 developmental biology3D bioprinting0303 health sciences3D bioprintinglcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologymedicine.anatomical_structureVascularized bonelcsh:TA1-2040tissue engineeringlcsh:Descriptive and experimental mechanicsTissue engineered bonelcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Biomedical engineeringMaterials
researchProduct