Search results for "Biosensing techniques"
showing 10 items of 96 documents
Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods
2016
Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived c…
Ultrathin and nanostructured ZnO-based films for fluorescence biosensing applications
2011
The fluorescence-based sensing capability of ultrathin ZnO-SiO(2) nanoplatforms, deposited by an integrated approach of colloidal lithography and metal organic chemical vapor deposition, has been investigated upon adsorption of fluorescein-labeled albumin, used as model analyte biomolecule. The protein immobilization process after spontaneous adsorption/desorption significantly enhances the green emission of the different ZnO-based films, as evidenced by scanning confocal microscopy, corresponding to a comparable protein coverage detected by X-ray photoelectron spectroscopy. Moreover, experiments of fluorescence recovery after photobleaching evidence that the protein lateral diffusion at th…
Rapid Evaluation of Oxidized Fatty Acid Concentration in Virgin Olive Oils Using Metal Oxide Semiconductor Sensors and Multiple Linear Regression
2009
This works aims to set up a rapid and nondestructive method to evaluate the advanced oxidation of virgin olive oils (VOOs). An electronic nose based on an array of six metal oxide semiconductor sensors was used, jointly with multiple linear regression (MLR), to predict the oxidized fatty acid (OFA) concentration in VOO samples characterized by different oxidative status. An MLR model constructed using five predictors was able to predict OFA concentration with an average validation error of 9%.
Construction of Chimeric Dual-Chain Avidin by Tandem Fusion of the Related Avidins
2011
BackgroundAvidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences i…
Core-clad phosphate glass fibers for biosensing
2019
Recently, a phosphate glass with composition 20 CaO-20 SrO-10 Na2O-50 P2O5 (mol%) was found to have good potential as a biomaterial and to possess thermal properties suitable for fiber drawing. This study opened the path towards the development of fully bioresorbable fibers promising for biosensing. In the past, this phosphate glass with CeO2 was found to increase the refractive index and the glass stability. Therefore, a new SrO-containing glass was prepared with 1 mol% of CeO2 and core fibers were drawn from it. A core-clad fiber was also processed, where the core was a Ce-doped glass and the clad undoped, to allow for total internal reflection. The mechanical properties of the core and c…
Dynamics of human cancer cell lines monitored by electrical and acoustic fluctuation analysis.
2010
Early determination of the metastatic potential of cancer cells is a crucial step for successful oncological treatment. Besides the remarkable progress in molecular genomics- or proteomics-based diagnostics, there is a great demand for in vitro biosensor devices that allow rapid and selective detection of the invasive properties of tumor cells. Here, the classical cancer cell motility in vitro assays for migration and invasion relying on Boyden chambers are compared to a real-time biosensor that analyzes the dynamic properties of adherent cells electro-acoustically with a time resolution on the order of seconds. The sensor relies on the well-established quartz crystal microbalance technique…
Ion-Selective Organic Electrochemical Transistors
2014
Ion-selective organic electrochemical transistors with sensitivity to potassium approaching 50 μA dec(-1) are demonstrated. The remarkable sensitivity arises from the use of high transconductance devices, where the conducting polymer is in direct contact with a reference gel electrolyte and integrated with an ion-selective membrane.
Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.
2021
Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…
Novel biosensoric devices based on molecular protein hetero-multilayer films
1997
We have developed a novel concept for the modification of technical surfaces with molecularly well-organized layers of bioorganic components. A molecular construction set has been used to implement this concept which is based on molecularly stratified polyelectrolyte films as a structure decoupling protein layers from solid substrates. Utilizing this technology, one can start from a number of different substrates to obtain the same surface structures, on which protein hetero-multilayer films can be prepared to functionalize the interface for (potentially very different) purposes. We have demonstrated the viability of this concept by constructing a biosensor surface that was characterized by…
Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity
2021
In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type a…