Search results for "Blast"
showing 10 items of 2136 documents
Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique
2016
Abstract Patients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various “gain-of–function” mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in se…
Frequency and prognostic impact of ALK amplifications and mutations in the European Neuroblastoma Study Group (SIOPEN) high-risk neuroblastoma trial …
2021
Purpose: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. Materials and methods: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). Results: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with …
Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.
2017
ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…
Tumor-Associated Fibroblasts Promote HER2-Targeted Therapy Resistance through FGFR2 Activation
2020
AbstractPurpose:Despite the therapeutic success of existing HER2-targeted therapies, tumors invariably relapse. This study aimed at identifying new mechanisms responsible for HER2-targeted therapy resistance.Experimental Design:We have used a platform of HER2-targeted therapy–resistant cell lines and primary cultures of healthy and tumor-associated fibroblasts (TAF) to identify new potential targets related to tumor escape from anti-HER2 therapies.Results:We have shown that TAFs promote resistance to HER2-targeted therapies. TAFs produce and secrete high levels of FGF5, which induces FGFR2 activation in the surrounding breast cancer cells. FGFR2 transactivates HER2 via c-Src, leading to res…
A g316a polymorphism in the ornithine decarboxylase gene promoter modulates mycn‐driven childhood neuroblastoma
2021
Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cel…
Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance
2019
Abstract In the last decades, the role of the microenvironment in tumor progression and therapeutic outcome has gained increasing attention. Cancer-associated fibroblasts (CAFs) have emerged as key players among stromal cells, owing to their abundance in most solid tumors and their diverse tumor-restraining/promoting roles. The interplay between tumor cells and neighboring CAFs takes place by both paracrine signals (cytokines, exosomes and metabolites) or by the multifaceted functions of the surrounding extracellular matrix. Here, we dissect the most recent identified mechanisms underlying CAF-mediated control of tumor progression and therapy resistance, which include induction of the epith…
Differential distribution and enrichment of non-coding RNAs in exosomes from normal and Cancer-associated fibroblasts in colorectal cancer.
2018
Exosome production from cancer-associated fibroblasts seems to be an important driver of tumor progression. We report the first in-depth biotype characterization of ncRNAs, analyzed by Next Generation Sequencing and Bioinformatics, expressed in established primary human normal and cancer-associated fibroblasts (CAFs) from cancer and normal mucosa tissues from 9 colorectal cancer patients, and/or packaged in their derived exosomes. Differential representation and enrichment analyses based on these ncRNAs revealed a significant number of differences between the ncRNA content of exosomes and the expression patterns of the normal and cancer-associated fibroblast cells. ncRNA regulatory elements…
The organoid era permits the development of new applications to study glioblastoma
2020
Simple Summary Glioblastoma is the most lethal primary adult brain tumor. The great number of mutations involved and the aggressiveness of glioblastoma render this type of cancer especially difficult to investigate. To address this problem, cerebral organoids have emerged as promising tools to investigate brain biology and to recapitulates the major steps involved in glioblastoma tumorigenesis. This review focuses on methods of cerebral organoid development, describes the protocols used for inducing glioblastoma, the approach used to derive glioblastoma organoids directly from patients’ biopsies and discusses their limitations and potential future direction. Abstract Glioblastoma (GB) is th…
Exploiting Gangliosides for the Therapy of Ewing’s Sarcoma and H3K27M-Mutant Diffuse Midline Glioma
2021
Simple Summary Osteosarcoma, Ewing’s sarcoma, and H3K27M-mutant diffuse midline glioma are rare but aggressive malignancies occurring mainly in children. Due to their rareness and often fatal course, drug development is challenging. Here, we repurposed the existing drugs dinutuximab and eliglustat and investigated their potential to directly target or indirectly modulate the tumor cell-specific ganglioside GD2. Our data suggest that targeting and/or modulating tumor cell-specific GD2 may offer a new therapeutic strategy for the above mentioned tumor entities. Abstract The ganglioside GD2 is an important target in childhood cancer. Nevertheless, the only therapy targeting GD2 that is approve…
Diversity of Clinically Relevant Outcomes Resulting from Hypofractionated Radiation in Human Glioma Stem Cells Mirrors Distinct Patterns of Transcrip…
2020
Hypofractionated radiotherapy is the mainstay of the current treatment for glioblastoma. However, the efficacy of radiotherapy is hindered by the high degree of radioresistance associated with glioma stem cells comprising a heterogeneous compartment of cell lineages differing in their phenotypic characteristics, molecular signatures, and biological responses to external signals. Reconstruction of radiation responses in glioma stem cells is necessary for understanding the biological and molecular determinants of glioblastoma radioresistance. To date, there is a paucity of information on the longitudinal outcomes of hypofractionated radiation in glioma stem cells. This study addresses long-te…