Search results for "Blast"

showing 10 items of 2136 documents

Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis.

2019

MicroRNA (miRNA) has shown to enhance or inhibit cell proliferation, differentiation and activity of different cell types in bone tissue. The discovery of miRNA actions and their targets has helped to identify them as novel regulations actors in bone. Various studies have shown that miRNA deregulation mediates the progression of bone-related pathologies, such as osteoporosis. The present review intends to give an exhaustive overview of miRNAs with experimentally validated targets involved in bone homeostasis and highlight their possible role in osteoporosis development. Moreover, the review analyzes miRNAs identified in clinical trials and involved in osteoporosis.

0301 basic medicineCell typeHistologyPhysiologyEndocrinology Diabetes and MetabolismOsteoporosis030209 endocrinology & metabolismBiologyBone tissueBioinformaticsBone healthBone and BonesEpigenesis Genetic03 medical and health sciences0302 clinical medicineOsteoclastSettore BIO/13 - Biologia ApplicatamicroRNAmedicineAnimalsHumansEpigeneticsmiRNA Bone Bone diseaseOsteoblastsOsteoblastCell Differentiationmedicine.diseaseMicroRNAs030104 developmental biologymedicine.anatomical_structureGene Expression RegulationOsteoporosisBone
researchProduct

Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures

2016

Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [s-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression…

0301 basic medicineCell typeMaterials scienceCell growthAngiogenesisBiomedical EngineeringOsteoblast02 engineering and technology021001 nanoscience & nanotechnologyUmbilical veinCell biologyBiomaterials03 medical and health sciences030104 developmental biologymedicine.anatomical_structureVasculogenesisCell cultureGene expressionmedicine0210 nano-technologyBiomedical engineeringJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2.

2018

Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP…

0301 basic medicineCellular differentiationMedical and Health SciencesNeuroblastomaSUZ12Oncogene MYCNCRISPR-Cas SystemCancerPediatricNeuronsN-Myc Proto-Oncogene ProteinTumorEZH2EpigeneticCell DifferentiationGeneral MedicineUp-RegulationGene Expression Regulation NeoplasticOncology5.1 PharmaceuticalsEpigeneticsDevelopment of treatments and therapeutic interventionsHumanResearch ArticlePediatric Research InitiativePediatric CancerImmunologymacromolecular substancesBiologyN-Myc Proto-Oncogene ProteinCell Line03 medical and health sciencesRare DiseasesNeuroblastomaCell Line TumormedicineGeneticsHumansEnhancer of Zeste Homolog 2 ProteinTranscription factorneoplasmsNeoplasticHuman GenomeNeurosciencesGene AmplificationNeuronmedicine.disease030104 developmental biologyGene Expression RegulationCancer researchHistone deacetylaseCRISPR-Cas SystemsThe Journal of clinical investigation
researchProduct

Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line

2018

Abstract Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation…

0301 basic medicineCellular respirationT-LymphocytesDown-RegulationMitochondrionToxicologyJurkat cellsTranscriptomeJurkat Cells03 medical and health sciences0404 agricultural biotechnologyDepsipeptidesGene expressionHumansGeneChemistryRespiratory chain complexNucleoside monophosphate metabolic process04 agricultural and veterinary sciencesGeneral MedicinePrecursor Cell Lymphoblastic Leukemia-Lymphoma040401 food scienceUp-RegulationCell biologyGene Expression Regulation Neoplastic030104 developmental biologyElectron Transport Chain Complex ProteinsTranscriptomeFood ScienceFood and Chemical Toxicology
researchProduct

Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…

2016

During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…

0301 basic medicineCentral Nervous SystemCancer ResearchEmbryologyGene ExpressionNervous SystemNeural Stem CellsAnimal CellsMedicine and Health SciencesDrosophila ProteinsHox geneGenetics (clinical)Regulation of gene expressionGeneticsNeuronsMembrane GlycoproteinsDrosophila MelanogasterGene Expression Regulation DevelopmentalAnimal ModelsProtein-Tyrosine KinasesNeural stem cellCell biologyInsectsPhenotypesembryonic structuresDrosophilaDrosophila melanogasterAnatomyCellular Structures and OrganellesCellular TypesResearch Articleanimal structuresArthropodalcsh:QH426-470ImmunoglobulinsBiologyAntennapediaResearch and Analysis Methods03 medical and health sciencesModel OrganismsNeuroblastNuclear BodiesCyclin EGeneticsAnimalsGene RegulationCell LineageMolecular BiologyEcology Evolution Behavior and SystematicsLoss functionCell NucleusHomeodomain ProteinsNeuroectodermEmbryosOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrateslcsh:Genetics030104 developmental biologyCellular NeuroscienceDevelopmental BiologyNeurosciencePLoS Genetics
researchProduct

Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila

2018

Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has be…

0301 basic medicineCentral Nervous SystemEmbryologylcsh:MedicineSerial homologyGene ExpressionNervous SystemAnimal CellsMedicine and Health SciencesBrainbow Labelinglcsh:ScienceNeuronsBrain MappingMultidisciplinarybiologyAnatomyNeuromereNeural stem cellChemistryPhysical SciencesDrosophilaDrosophila melanogasterAnatomyCellular TypesHomeotic geneResearch ArticleLineage (genetic)Imaging TechniquesNeuroimagingResearch and Analysis MethodsComposite Images03 medical and health sciencesNeuroblastInterneuronsGeneticsAnimalsCell LineageMolecular Biology TechniquesMolecular BiologyGround Statelcsh:REmbryosBiology and Life SciencesCell BiologyQuantum Chemistrybiology.organism_classification030104 developmental biologyVentral nerve cordCellular Neurosciencelcsh:QCloningNeuroscienceDevelopmental BiologyPLoS ONE
researchProduct

Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.

2015

The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, part…

0301 basic medicineCentral Nervous SystemGenetic Markersanimal structuresSerial homologyCell CountGenes InsectBiology03 medical and health sciences0302 clinical medicineNeuroblastNeural Stem CellsNeuroblastsAbdomenAnimalsCell LineageHox geneMolecular Biologyreproductive and urinary physiologyfungiAnatomyThoraxGene expression profileNeuromereStem Cells and RegenerationEmbryonic stem cellNeural stem cellCell biology103Segmental patterning030104 developmental biologyDrosophila melanogasternervous systemVentral nerve cordDrosophila brainembryonic structuresDeformedTranscriptomeGanglion mother cell030217 neurology & neurosurgeryDevelopmental BiologyDevelopment (Cambridge, England)
researchProduct

Fungal Infections of the Central Nervous System in Children.

2017

Although uncommon in children, fungal infections of the central nervous system can be devastating and difficult to treat. A better understanding of basic mycologic, immunologic, and pharmacologic processes has led to important advances in the diagnosis and management of these diseases, but their mortality rates remain unacceptably high. In this focused review, we examine the epidemiology and clinical features of the most common fungal pathogens of the central nervous system in children and explore recent advances in diagnosis and antifungal therapy.

0301 basic medicineCentral Nervous Systemmedicine.medical_specialtyAntifungal Agents030106 microbiologyCentral nervous systemAspergillosisHistoplasmosisBlastomycosis03 medical and health sciencesCentral Nervous System Fungal InfectionsEpidemiologymedicineAspergillosisHumansMucormycosisIntensive care medicineChildHistoplasmosisCoccidioidomycosisbusiness.industryMortality rateMucormycosisCandidiasisFungiGeneral MedicineCryptococcosismedicine.diseaseInfectious Diseasesmedicine.anatomical_structurePediatrics Perinatology and Child HealthCryptococcosisbusinessBlastomycosisJournal of the Pediatric Infectious Diseases Society
researchProduct

Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma

2018

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mu…

0301 basic medicineCerebellumCrebbp protein mousemetabolism [Cerebellar Neoplasms]acetyltransferase; cerebellum; CREBBP; development; Rubinstein-Taybi syndrome; SHH medulloblastomagenetics [Hedgehog Proteins]MiceNeurotrophic factorsmetabolism [CREB-Binding Protein]Mice KnockoutNeuronsRubinstein-Taybi Syndromepathology [Rubinstein-Taybi Syndrome]CREBBPCREB-Binding ProteinPhenotypegenetics [CREB-Binding Protein]3. Good healthpathology [Cerebellar Neoplasms]acetyltransferasePhenotypemedicine.anatomical_structuregenetics [Rubinstein-Taybi Syndrome]Femalemetabolism [Hedgehog Proteins]Signal TransductionSHH medulloblastomaAdultcerebellumBiologyGeneral Biochemistry Genetics and Molecular BiologyCREBBP; Rubinstein-Taybi syndrome; SHH medulloblastoma; acetyltransferase; cerebellum; development.03 medical and health sciencesGermline mutationAcetyltransferasesmetabolism [Medulloblastoma]medicineAnimalsHumansgenetics [Cerebellar Neoplasms]Hedgehog Proteinsddc:610Cerebellar NeoplasmsdevelopmentMolecular BiologyMedulloblastomaRubinstein–Taybi syndromegenetics [Medulloblastoma]metabolism [Rubinstein-Taybi Syndrome]pathology [Medulloblastoma]Cell Biologymedicine.disease030104 developmental biologyMutationphysiology [CREB-Binding Protein]Cancer researchSHH protein humanCerebellar hypoplasia (non-human)metabolism [Acetyltransferases]CREBBP protein humanMedulloblastomaDevelopmental BiologyCongenital disorderDevelopmental Cell
researchProduct

A New Mutation of the p53 Gene in Human Neuroblastoma, Not Correlated with N-myc Amplification

1999

N-myc gene amplification and/or loss of heterozygosity of chromosome 1 (LOH lp) are important criteria for prognosis and progression in human neuroblastoma (NB). Despite the high incidence of alterations of the p53 gene in human cancers, very few p53 mutations have been reported in NB. The objective of our study was to search for p53 mutations in NB and their correlation with N-myc amplification and clinical or pathologic parameters. We analyzed 14 selected cases of NB from the Spanish Protocol N-II-92. We found a missense mutation in codon 248 CGG to GGG (Arg/Gly) in one case of stage 4 NB with no N-myc amplification. Our results confirm the low incidence of p53 gene mutation in neuroblas…

0301 basic medicineChromosomeBiologyGene mutationmedicine.diseaseMolecular biologyPathology and Forensic MedicineLoss of heterozygosity03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisNeuroblastomaGene duplicationmedicineCancer researchMissense mutationSurgeryAnatomyGeneN-MycInternational Journal of Surgical Pathology
researchProduct