Search results for "Blast"
showing 10 items of 2136 documents
Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis.
2019
MicroRNA (miRNA) has shown to enhance or inhibit cell proliferation, differentiation and activity of different cell types in bone tissue. The discovery of miRNA actions and their targets has helped to identify them as novel regulations actors in bone. Various studies have shown that miRNA deregulation mediates the progression of bone-related pathologies, such as osteoporosis. The present review intends to give an exhaustive overview of miRNAs with experimentally validated targets involved in bone homeostasis and highlight their possible role in osteoporosis development. Moreover, the review analyzes miRNAs identified in clinical trials and involved in osteoporosis.
Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures
2016
Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [s-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression…
CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2.
2018
Pharmacologically difficult targets, such as MYC transcription factors, represent a major challenge in cancer therapy. For the childhood cancer neuroblastoma, amplification of the oncogene MYCN is associated with high-risk disease and poor prognosis. Here, we deployed genome-scale CRISPR-Cas9 screening of MYCN-amplified neuroblastoma and found a preferential dependency on genes encoding the polycomb repressive complex 2 (PRC2) components EZH2, EED, and SUZ12. Genetic and pharmacological suppression of EZH2 inhibited neuroblastoma growth in vitro and in vivo. Moreover, compared with neuroblastomas without MYCN amplification, MYCN-amplified neuroblastomas expressed higher levels of EZH2. ChIP…
Enniatin B induces expression changes in the electron transport chain pathway related genes in lymphoblastic T-cell line
2018
Abstract Enniatin B is a ionophoric and lipophilic mycotoxin which reaches the bloodstream and has the ability to penetrate into cellular membranes. The purpose of this study was to reveal changes in the gene expression profile caused by enniatin B in human Jurkat lymphoblastic T-cells after 24 h of exposure at 1.5, 3 and 5 μM by next generation sequencing. It was found that up to 27% of human genome expression levels were significantly altered (5750 genes for both down-regulation and up-regulation). In the three enniatin B concentrations studied 245 differentially expressed genes were found to be overlapped, 83 were down and 162 up-regulated. ConsensusPathDB analysis of over-representation…
Cell-Autonomous and Non-cell-autonomous Function of Hox Genes Specify Segmental Neuroblast Identity in the Gnathal Region of the Embryonic CNS in Dro…
2016
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to i…
Progressive derivation of serially homologous neuroblast lineages in the gnathal CNS of Drosophila
2018
Along the anterior-posterior axis the central nervous system is subdivided into segmental units (neuromeres) the composition of which is adapted to their region-specific functional requirements. In Drosophila melanogaster each neuromere is formed by a specific set of identified neural stem cells (neuroblasts, NBs). In the thoracic and anterior abdominal region of the embryonic ventral nerve cord segmental sets of NBs resemble the ground state (2nd thoracic segment, which does not require input of homeotic genes), and serial (segmental) homologs generate similar types of lineages. The three gnathal head segments form a transitional zone between the brain and the ventral nerve cord. It has be…
Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.
2015
The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, part…
Fungal Infections of the Central Nervous System in Children.
2017
Although uncommon in children, fungal infections of the central nervous system can be devastating and difficult to treat. A better understanding of basic mycologic, immunologic, and pharmacologic processes has led to important advances in the diagnosis and management of these diseases, but their mortality rates remain unacceptably high. In this focused review, we examine the epidemiology and clinical features of the most common fungal pathogens of the central nervous system in children and explore recent advances in diagnosis and antifungal therapy.
Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma
2018
Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mu…
A New Mutation of the p53 Gene in Human Neuroblastoma, Not Correlated with N-myc Amplification
1999
N-myc gene amplification and/or loss of heterozygosity of chromosome 1 (LOH lp) are important criteria for prognosis and progression in human neuroblastoma (NB). Despite the high incidence of alterations of the p53 gene in human cancers, very few p53 mutations have been reported in NB. The objective of our study was to search for p53 mutations in NB and their correlation with N-myc amplification and clinical or pathologic parameters. We analyzed 14 selected cases of NB from the Spanish Protocol N-II-92. We found a missense mutation in codon 248 CGG to GGG (Arg/Gly) in one case of stage 4 NB with no N-myc amplification. Our results confirm the low incidence of p53 gene mutation in neuroblas…