Search results for "Blochmannia"

showing 5 items of 5 documents

Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria

2005

International audience; Most endosymbiotic bacteria have extremely reduced genomes, accelerated evolutionary rates, and strong AT base compositional bias thought to reflect reduced efficacy of selection and increased mutational pressure. Here, we present a comparative study of evolutionary forces shaping five fully sequenced bacterial endosymbionts of insects. The results of this study were three-fold: (i) Stronger conservation of high expression genes at not just nonsynonymous, but also synonymous, sites. (ii) Variation in amino acid usage strongly correlates with GC content and expression level of genes. This pattern is largely explained by greater conservation of high expression genes, l…

0106 biological sciencesNonsynonymous substitutionInsectafood.ingredientBlochmanniaBiology010603 evolutionary biology01 natural sciencesGenomeEvolution Molecular03 medical and health sciencesfoodBacterial ProteinsBuchneraSpecies SpecificityGeneticsAnimalsAmino AcidsCodonSymbiosisWigglesworthiaGene030304 developmental biology2. Zero hungerGeneticschemistry.chemical_classification0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsBacteriaGene Expression Regulation BacterialGeneral Medicinebiology.organism_classificationAT Rich SequenceGC Rich SequenceAmino acidINSECTEAmino Acid SubstitutionchemistryCodon usage biasMutationDatabases Nucleic AcidBuchneraGC-content
researchProduct

Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

2009

Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functio…

Cancer Researchfood.ingredientlcsh:QH426-470NitrogenBlochmanniaZoologyCockroachesEvolution Molecular03 medical and health sciencesBlattabacteriumfoodSymbiosisEnterobacteriaceaePhylogeneticsAmmoniabiology.animalBotanyGeneticsAnimalsAmino AcidsSymbiosisMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and SystematicsPhylogeny030304 developmental biology0303 health sciencesGerman cockroachCockroachbiologyPhylogenetic treeEvolutionary Biology/Evolutionary and Comparative Genetics030306 microbiologyAntsBacteroidetesfungiGenomicsbiochemical phenomena metabolism and nutritionbiology.organism_classificationGenetics and Genomics/Microbial Evolution and Genomicslcsh:GeneticsGenetics and Genomics/Genome ProjectsEvolutionary Biology/Microbial Evolution and GenomicsHost-Pathogen InteractionsBacteriaGenome BacterialMetabolic Networks and PathwaysResearch ArticlePLoS genetics
researchProduct

Slow and fast evolving endosymbiont lineages: positive correlation between the rates of synonymous and nonsynonymous substitution

2015

The availability of complete genome sequences of bacterial endosymbionts with strict vertical transmission to the host progeny opens the possibility to estimate molecular evolutionary rates in different lineages and understand the main biological mechanisms influencing these rates. We have compared the rates of evolution for non-synonymous and synonymous substitutions in nine bacterial endosymbiont lineages, belonging to four clades (Baumannia, Blochmannia, Portiera, and Sulcia). The main results are the observation of a positive correlation between both rates with differences among lineages of up to three orders of magnitude and that the substitution rates decrease over long endosymbioses.…

Microbiology (medical)GeneticsDNA ReplicationNatural selectionfood.ingredientGeneration timeendosymbiosisEndosymbiosisObligateDNA RepairDNA repair[SDV]Life Sciences [q-bio]BlochmanniaDNA replicationlcsh:QR1-502BiologyEvolutionary rateMicrobiologyGenomelcsh:MicrobiologyfoodGeneration timePerspectiveComputingMilieux_MISCELLANEOUSnucleotide substitutionFrontiers in Microbiology
researchProduct

Genome rearrangement distances and gene order phylogeny in gamma-Proteobacteria.

2005

Genome rearrangements have been studied in 30 gamma-proteobacterial complete genomes by comparing the order of a reduced set of genes on the chromosome. This set included those genes fulfilling several characteristics, the main ones being that an ortholog was present in every genome and that none of them had been acquired by horizontal gene transfer. Genome rearrangement distances were estimated based on either the number of breakpoints or the minimal number of inversions separating two genomes. Breakpoint and inversion distances were highly correlated, indicating that inversions were the main type of rearrangement event in gamma-Proteobacteria. In general, the progressive increase in seque…

food.ingredientTime FactorsGene Transfer HorizontalYersinia pestisLineage (evolution)BlochmanniaBiologyWigglesworthia glossinidiaGenomeEvolution MolecularfoodPhylogeneticsGene OrderGeneticsEscherichia coliMolecular BiologyEcology Evolution Behavior and SystematicsPhylogenyGeneticsGenomePhylogenetic treeModels GeneticModels Theoreticalbiology.organism_classificationBiological EvolutionHorizontal gene transferBuchneraGammaproteobacteriaGenome BacterialMolecular biology and evolution
researchProduct

The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

2003

Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus , the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation ( dna A, pri A, and rec A). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buch…

replicationInsectafood.ingredientMolecular Sequence DataBlochmanniaselectionWigglesworthia glossinidiaModels BiologicalGenomeescherichia-coli k-12Open Reading FramesfoodPhylogeneticsevolutionAnimalsGenebuchneraPhylogenyGeneticsMultidisciplinaryPhylogenetic treebiologyphylogenetic analysisSequence Analysis DNABiological Sciencesbiology.organism_classificationDnaAproteinsgene-clusterPRI Bioscienceaphidsendosymbiotic bacteriaBuchneraGammaproteobacteriaGenome Bacterial
researchProduct