Search results for "Boltzmann method"

showing 10 items of 41 documents

Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchann…

2009

In this contribution we review recent efforts on investigations of the effect of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We demonstrate the applicability of the method to treat fundamental questions in microfluidics by investigating fluid flow in hydrophobic and rough microchannels as well as over surfaces covered by nano- or microscale gas bubbles.

Materials scienceMicrofluidicsLattice Boltzmann methodsFluid Dynamics (physics.flu-dyn)FOS: Physical sciencesSlip (materials science)MechanicsPhysics - Fluid DynamicsCondensed Matter - Soft Condensed MatterCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysics::Fluid DynamicsNano-Fluid dynamicsNo-slip conditionMaterials ChemistrySoft Condensed Matter (cond-mat.soft)Microscale chemistryMicrofluidics and Nanofluidics
researchProduct

Effective slippage on superhydrophobic trapezoidal grooves

2013

We study the effective slippage on superhydrophobic grooves with trapezoidal cross-sections of various geometries (including the limiting cases of triangles and rectangular stripes), by using two complementary approaches. First, dissipative particle dynamics (DPD) simulations of a flow past such surfaces have been performed to validate an expression [E.S.Asmolov and O.I.Vinogradova, J. Fluid Mech. \textbf{706}, 108 (2012)] that relates the eigenvalues of the effective slip-length tensor for one-dimensional textures. Second, we propose theoretical estimates for the effective slip length and calculate it numerically by solving the Stokes equation based on a collocation method. The comparison …

Materials scienceNumerical analysisDissipative particle dynamicsFluid Dynamics (physics.flu-dyn)Lattice Boltzmann methodsFOS: Physical sciencesGeneral Physics and AstronomyPhysics - Fluid DynamicsSlip (materials science)Surface finishMechanicsStokes flowPhysics::Fluid DynamicsCollocation methodSlippagePhysical and Theoretical ChemistryThe Journal of Chemical Physics
researchProduct

Iterative momentum relaxation for fast lattice-Boltzmann simulations

2001

Abstract Lattice-Boltzmann simulations are often used for studying steady-state hydrodynamics. In these simulations, however, the complete time evolution starting from some initial condition is redundantly computed due to the transient nature of the scheme. In this article we present a refinement of body-force driven lattice-Boltzmann simulations that may reduce the simulation time significantly. This new technique is based on an iterative adjustment of the local body-force. We validate this technique on three test cases, namely fluid flow around a spherical obstacle, flow in random fiber mats and flow in a static mixer reactor.

Mathematical optimizationComputer Networks and CommunicationsComputer scienceLattice Boltzmann methodsTime evolutionPorous mediaRelaxation (iterative method)Fluid mechanicsMechanicsStatic mixerlaw.inventionMomentumFlow (mathematics)Hardware and ArchitecturelawLattice-Boltzmann methodFluid dynamicsInitial value problemFluid mechanicsPorous mediumSoftware
researchProduct

Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling

2008

We present hydrokinetic Lattice Boltzmann and Molecular Dynamics simulations of capillary filling of high-wetting fluids in nano-channels, which provide clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey the Lucas-Washburn law as the main capillary front, z2(t) proportional to t, although with a larger prefactor, which we find to take the same value for both geometries under inspection. Both hydrokinetic and Molecular Dynamics approaches indicate a precursor film thickness of the order of one tenth of the capillary diameter. The quantitative agreement between the hydrokinetic and atomistic m…

Mesoscopic physicsMaterials scienceCapillary actionLattice Boltzmann methodsFluid Dynamics (physics.flu-dyn)General Physics and AstronomyFOS: Physical sciencesPhysics - Fluid DynamicsCapillary fillingPhysics::Fluid DynamicsMolecular dynamicsChemical physicsNano-WettingThin film
researchProduct

Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures

2017

We present a new second-order energy dissipative numerical scheme to treat macroscopic equations aiming at the modeling of the dynamics of complex polymer–solvent mixtures. These partial differential equations are the Cahn-Hilliard equation for diffuse interface phase fields and the Oldroyd-B equations for the hydrodynamics of the polymeric mixture. A second-order combined finite volume/finite difference method is applied for the spatial discretization. A complementary approach to study the same physical system is realized by simulations of a microscopic model based on a hybrid Lattice Boltzmann/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical…

Molecular dynamicsPartial differential equationMaterials scienceFinite volume methodDiscretizationPhysical systemDissipative systemFinite difference methodLattice Boltzmann methodsStatistical physics
researchProduct

Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method

2000

Abstract We have simulated spreading of small droplets on smooth and rough solid surfaces using the three-dimensional lattice-Boltzmann method. We present results for the influence of the initial distance and shape of the drop from the surface on scaling of droplet radius R as a function of time. For relatively flat initial drop shapes our observations are consistent with Tanner's law R ∼ t q , where q =1/10. For increasingly spherical initial shapes, the exponent q increases rapidly being above one half for spherical droplets initially just above the surface. As expected, surface roughness slows down spreading, decreases the final drop radius, and results in irregular droplet shape due to …

One halfGeneral Computer ScienceChemistryDrop (liquid)Lattice Boltzmann methodsGeneral Physics and AstronomyWettingGeneral ChemistryMechanicsSurface finishBoltzmann equationPhysics::Fluid DynamicsDropletComputational MathematicsClassical mechanicsMechanics of MaterialsSurface roughnessGeneral Materials ScienceWettingScalingLattice-Boltzmann
researchProduct

Fuzzy selecting local region level set algorithm

2015

In this work, we introduced a novel localized region based level set model which is simultaneously effective for heterogeneous object or/and background and robust against noise. As such, we propose to minimize an energy functional based on a selective local average, i.e., when computing the local average, instead to use the intensity of all the pixels surrounding a given pixel, we first give a local Gaussian fuzzy membership to be a background or an object pixel to each of these surrounding pixels and then, we use the fuzzy weighted local average of these pixels to replace the traditional local average. With the graphics processing units' acceleration, the local lattice Boltzmann method is …

Parallelizable manifoldPixelbusiness.industryGaussianLattice Boltzmann methodsFuzzy logicsymbols.namesakeRobustness (computer science)symbolsComputer visionArtificial intelligenceGraphicsbusinessAlgorithmMathematicsEnergy functional2015 23rd European Signal Processing Conference (EUSIPCO)
researchProduct

Moment‐based boundary conditions for straight on‐grid boundaries in three‐dimensional lattice Boltzmann simulations

2020

In this article, moment‐based boundary conditions for the lattice Boltzmann method are extended to three dimensions. Boundary conditions for velocity and pressure are explicitly derived for straight on‐grid boundaries for the D3Q19 lattice. The method is compared against the bounce‐back scheme using both single and two relaxation time collision schemes. The method is verified using classical benchmark test cases. The results show very good agreement with the data found in the literature. It is confirmed from the results that the derived moment‐based boundary scheme is of second‐order accuracy in grid spacing and does not produce numerical slip, and therefore offers a transparent way of accu…

PhysicsApplied MathematicsMechanical EngineeringMathematical analysisComputational MechanicsLattice Boltzmann methodsSlip (materials science)GridCollision01 natural sciences010305 fluids & plasmasComputer Science Applications010101 applied mathematicsTest caseMechanics of MaterialsLattice (order)0103 physical sciencesBoundary value problem0101 mathematicsQAInternational Journal for Numerical Methods in Fluids
researchProduct

Combining Molecular Dynamics with Lattice-Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems

2005

We present a hybrid method for the simulation of colloidal systems, that combines molecular dynamics (MD) with the Lattice-Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point (with a velocity V(r) at any off-lattice position r is interacting with the neighboring eight LB nodes by a frictional force F=\xi_0(V(r)-u(r)) with \xi_0 being a friction force and u(r)…

PhysicsCondensed Matter - Materials ScienceLattice Boltzmann methodsGeneral Physics and AstronomyThermal fluctuationsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter - Soft Condensed MatterMolecular physicsEffective nuclear chargeMomentumCondensed Matter::Soft Condensed MatterMolecular dynamicsCoupling (physics)Position (vector)Electric fieldSoft Condensed Matter (cond-mat.soft)Physical and Theoretical Chemistry
researchProduct

Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows

2006

A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.

PhysicsCondensed Matter - Materials ScienceNanostructureLattice Boltzmann methodsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural NetworksNanostructuresMolecular dynamicsModels ChemicalFluid dynamicsThermodynamicsComputer SimulationVector fieldStatistical physicsThin filmNanoscopic scale
researchProduct