Search results for "Boltzmann method"
showing 10 items of 41 documents
Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchann…
2009
In this contribution we review recent efforts on investigations of the effect of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We demonstrate the applicability of the method to treat fundamental questions in microfluidics by investigating fluid flow in hydrophobic and rough microchannels as well as over surfaces covered by nano- or microscale gas bubbles.
Effective slippage on superhydrophobic trapezoidal grooves
2013
We study the effective slippage on superhydrophobic grooves with trapezoidal cross-sections of various geometries (including the limiting cases of triangles and rectangular stripes), by using two complementary approaches. First, dissipative particle dynamics (DPD) simulations of a flow past such surfaces have been performed to validate an expression [E.S.Asmolov and O.I.Vinogradova, J. Fluid Mech. \textbf{706}, 108 (2012)] that relates the eigenvalues of the effective slip-length tensor for one-dimensional textures. Second, we propose theoretical estimates for the effective slip length and calculate it numerically by solving the Stokes equation based on a collocation method. The comparison …
Iterative momentum relaxation for fast lattice-Boltzmann simulations
2001
Abstract Lattice-Boltzmann simulations are often used for studying steady-state hydrodynamics. In these simulations, however, the complete time evolution starting from some initial condition is redundantly computed due to the transient nature of the scheme. In this article we present a refinement of body-force driven lattice-Boltzmann simulations that may reduce the simulation time significantly. This new technique is based on an iterative adjustment of the local body-force. We validate this technique on three test cases, namely fluid flow around a spherical obstacle, flow in random fiber mats and flow in a static mixer reactor.
Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling
2008
We present hydrokinetic Lattice Boltzmann and Molecular Dynamics simulations of capillary filling of high-wetting fluids in nano-channels, which provide clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey the Lucas-Washburn law as the main capillary front, z2(t) proportional to t, although with a larger prefactor, which we find to take the same value for both geometries under inspection. Both hydrokinetic and Molecular Dynamics approaches indicate a precursor film thickness of the order of one tenth of the capillary diameter. The quantitative agreement between the hydrokinetic and atomistic m…
Energy-Stable Numerical Schemes for Multiscale Simulations of Polymer–Solvent Mixtures
2017
We present a new second-order energy dissipative numerical scheme to treat macroscopic equations aiming at the modeling of the dynamics of complex polymer–solvent mixtures. These partial differential equations are the Cahn-Hilliard equation for diffuse interface phase fields and the Oldroyd-B equations for the hydrodynamics of the polymeric mixture. A second-order combined finite volume/finite difference method is applied for the spatial discretization. A complementary approach to study the same physical system is realized by simulations of a microscopic model based on a hybrid Lattice Boltzmann/Molecular Dynamics scheme. These latter simulations provide initial conditions for the numerical…
Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method
2000
Abstract We have simulated spreading of small droplets on smooth and rough solid surfaces using the three-dimensional lattice-Boltzmann method. We present results for the influence of the initial distance and shape of the drop from the surface on scaling of droplet radius R as a function of time. For relatively flat initial drop shapes our observations are consistent with Tanner's law R ∼ t q , where q =1/10. For increasingly spherical initial shapes, the exponent q increases rapidly being above one half for spherical droplets initially just above the surface. As expected, surface roughness slows down spreading, decreases the final drop radius, and results in irregular droplet shape due to …
Fuzzy selecting local region level set algorithm
2015
In this work, we introduced a novel localized region based level set model which is simultaneously effective for heterogeneous object or/and background and robust against noise. As such, we propose to minimize an energy functional based on a selective local average, i.e., when computing the local average, instead to use the intensity of all the pixels surrounding a given pixel, we first give a local Gaussian fuzzy membership to be a background or an object pixel to each of these surrounding pixels and then, we use the fuzzy weighted local average of these pixels to replace the traditional local average. With the graphics processing units' acceleration, the local lattice Boltzmann method is …
Moment‐based boundary conditions for straight on‐grid boundaries in three‐dimensional lattice Boltzmann simulations
2020
In this article, moment‐based boundary conditions for the lattice Boltzmann method are extended to three dimensions. Boundary conditions for velocity and pressure are explicitly derived for straight on‐grid boundaries for the D3Q19 lattice. The method is compared against the bounce‐back scheme using both single and two relaxation time collision schemes. The method is verified using classical benchmark test cases. The results show very good agreement with the data found in the literature. It is confirmed from the results that the derived moment‐based boundary scheme is of second‐order accuracy in grid spacing and does not produce numerical slip, and therefore offers a transparent way of accu…
Combining Molecular Dynamics with Lattice-Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems
2005
We present a hybrid method for the simulation of colloidal systems, that combines molecular dynamics (MD) with the Lattice-Boltzmann (LB) scheme. The LB method is used as a model for the solvent in order to take into account the hydrodynamic mass and momentum transport through the solvent. The colloidal particles are propagated via MD and they are coupled to the LB fluid by viscous forces. With respect to the LB fluid, the colloids are represented by uniformly distributed points on a sphere. Each such point (with a velocity V(r) at any off-lattice position r is interacting with the neighboring eight LB nodes by a frictional force F=\xi_0(V(r)-u(r)) with \xi_0 being a friction force and u(r)…
Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows
2006
A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.