Search results for "Bone tissue engineering"

showing 6 items of 16 documents

Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering

2008

Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on postimplantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular matrix (ECM) that combines a nano-network, aimed to promote cell adhesion, with a micro-fiber mesh that provides the mechanical support. In this work we addressed the influence of this nano-network on growth pattern, morphology, inflammatory expression profile, expression of structura…

ScaffoldMaterials scienceEndothelial cellsMaterials ScienceBiophysicsNeovascularization PhysiologicNano-fibersBioengineering02 engineering and technologyStarch-based scaffoldsCell morphologyBone and BonesBone tissue engineeringBiomaterialsExtracellular matrix03 medical and health sciencesEngineeringMicroscopy Electron TransmissionTissue engineeringHumansVimentinBone regenerationCell adhesionCells Cultured030304 developmental biologyInflammation0303 health sciencesScience & TechnologyTissue EngineeringVascularizationtechnology industry and agriculture021001 nanoscience & nanotechnologyNanostructuresCell biologyPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellGene Expression RegulationMechanics of MaterialsNanofiberMicroscopy Electron ScanningCeramics and Composites0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct

Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules

2018

In a large number of medical devices, a key feature of a biomaterial is the ability to successfully bond to living tissues by means of engineered mechanisms such as the enhancement of biomineralization on a bone tissue engineering scaffold or the mimicking of the natural structure of the extracellular matrix (ECM). This ability is commonly referred to as "bioactivity". Materials sciences started to grow interest in it since the development of bioactive glasses by Larry Hench five decades ago. As the main goal in applications of biomedical devices and tissue scaffolds is to obtain a seamless tissue-material interface, achieving optimal bioactivity is essential for the success of most biomate…

ScaffoldMaterials sciencePolyestersInterface (computing)Materials SciencePolyesterCompositeBioengineeringNanotechnologyCondensed Matter Physic02 engineering and technology010402 general chemistryBioactivity01 natural sciencesPolylactic acidBone tissue engineeringScaffoldBiomaterialsTissue ScaffoldTissue engineeringIntercellular Signaling Peptides and ProteinAnimalsHumansMechanics of Materialchemistry.chemical_classificationTissue ScaffoldsTissue EngineeringAnimalMechanical EngineeringBiomoleculeBiomedical polymersBiomaterialExtracellular matrix021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsIntercellular Signaling Peptides and ProteinsTissue materialMaterials Science (all)0210 nano-technologyTissue-material interfaceHumanMaterials Science and Engineering: C
researchProduct

Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems

2014

One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-li…

ScaffoldOsteoblastsTissue EngineeringTissue ScaffoldsAngiogenesisEndothelial CellsNeovascularization PhysiologicPharmaceutical ScienceBone scaffoldOsteoblastBiologyCoculture TechniquesIn vitroBone tissue engineeringCell biologyEndothelial stem cellmedicine.anatomical_structureOsteogenesisImmunologymedicineHumansCell ProliferationEndothelial Progenitor CellsAdvanced Drug Delivery Reviews
researchProduct

Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications

2013

The siliceous sponges, the demosponges and hexactinellid glass sponges, are unique in their ability to form biosilica structures with complex architectures through an enzyme-catalyzed mechanism. The biosilica skeleton of these sponges with its hierarchically structure and exceptional opto-mechanical properties has turned out to be an excellent model for the design of biomimetic nanomaterials with novel property combinations. In addition, biosilica shows morphogenetic activity that offers novel applications in the field of bone tissue engineering and repair. In recent years, much progress has been achieved towards the understanding of the principal enzymes, the silicateins that form the spon…

Siliceous spongeSpongeSponge spiculePolycondensation reactionbiologyHexactinellidNanobiotechnologyNanomedicineNanotechnologybiology.organism_classificationBone tissue engineering
researchProduct

Inorganic Polymers: Morphogenic Inorganic Biopolymers for Rapid Prototyping Chain

2013

In recent years, considerable progress has been achieved towards the development of customized scaffold materials, in particular for bone tissue engineering and repair, by the introduction of rapid prototyping or solid freeform fabrication techniques. These new fabrication techniques allow to overcome many problems associated with conventional bone implants, such as inadequate external morphology and internal architecture, porosity and interconnectivity, and low reproducibility. However, the applicability of these new techniques is still hampered by the fact that high processing temperature or a postsintering is often required to increase the mechanical stability of the generated scaffold, …

chemistry.chemical_classificationRapid prototypingScaffoldBiocompatibilityNanotechnologyPolymerBiologyInterconnectivityBone tissue engineeringlaw.inventionchemistrylawBioactive glassSurface modification
researchProduct

Angiogenesis control in spine regeneration

2012

Abstract: The intervertebral disc (IVD) has a complex vascularisation pattern. While the nucleus pulposus is avascular, the annulus fibrosus as well as the endplates are vascularised. IVD degeneration is often accompanied, on the one hand, by blood vessel ingrowth into the nucleus pulposus and, on the other hand, by diminished vascularisation of the endplates. Tissue engineering of IVD, therefore, has to address the differences in the vascularisation of IVD compartments. This chapter summarises current knowledge about the mechanisms of angiogenesis and its physiological and pathological role in IVD biology. Different strategies to control angiogenesis are discussed in the chapter with examp…

musculoskeletal diseasesAngiogenesisRegeneration (biology)VEGF receptorsIntervertebral discAnatomyDegeneration (medical)Biologymusculoskeletal systemBone tissue engineeringmedicine.anatomical_structureTissue engineeringotorhinolaryngologic diseasesmedicinebiology.proteinsense organsBlood vessel
researchProduct