Search results for "Botrytis"

showing 10 items of 104 documents

Laccases of Botrytis cinerea

2017

Phenolic compounds significantly affect the color, odor and taste of wine. Due to their presumptive beneficial impact on human health, polyphenols in red wine have gained increasing public and scientific interest. Wine phenols are extremely sensitive to oxygen and are easily converted to brownish oxidation products accompanied by loss of nutritive values of the wine. Enzymatic oxidation takes place under the influence of polyphenoloxidases including tyrosinases and laccases. The latter are produced by the phytopathogenic fungus Botrytis cinerea and enter the must with contaminated berries. Although uncontrolled action of Botrytis-laccase has a dramatic impact on wine quality, the oxidative …

0106 biological sciences0301 basic medicineLaccaseWineTastebiologydigestive oral and skin physiologyfood and beveragesFungusbiology.organism_classification01 natural sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryOdorPolyphenol010608 biotechnologyPhenolsFood scienceBotrytis cinerea
researchProduct

The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to Botrytis cinerea and in miRNA Regulation

2020

Research into the relationship between epigenetic regulation and resistance to biotic stresses provides alternatives for plant protection and crop improvement. To unravel the mechanisms underlying tomato responses to Botrytis cinerea, we performed a chromatin immunoprecipitation (ChIP) analysis showing the increase in H3K9ac mark along the early induced genes SlyDES, SlyDOX1, and SlyLoxD encoding oxylipin-pathway enzymes, and SlyWRKY75 coding for a transcriptional regulator of hormonal signaling. This histone mark showed a more distinct distribution than the previously studied H3K4me3. The RNAPol-ChIP analysis reflected the actual gene transcription associated with increased histone modific…

0106 biological sciences0301 basic medicinePseudomonas syringaeMiRNA bindingPlant ScienceBiology<i>pseudomonas syringae</i>01 natural sciencesTomato03 medical and health sciencesBotrytis cinerealcsh:BotanyTomàquetsTranscriptional regulationEpigeneticsGeneEcology Evolution Behavior and SystematicsBotrytis cinereamiRNAGeneticsEcologyHistone modificationsfungifood and beveragesFongs patògensbiology.organism_classificationChromatin immunoprecipitationlcsh:QK1-989030104 developmental biologyHistone<i>botrytis cinerea</i>biology.proteinRNAH3K4me3EpigeneticsChromatin immunoprecipitation010606 plant biology & botany
researchProduct

Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance toHyaloperonospora arabidopsidis

2013

Like their animal counterparts, plant glutamate receptor-like (GLR) homologs are intimately associated with Ca(2+) influx through plasma membrane and participate in various physiological processes. In pathogen-associated molecular patterns (PAMP)-/elicitor-mediated resistance, Ca(2+) fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca(2+)] ([Ca(2+)]cyt) variations, nitric oxide (N…

0106 biological sciencesArabidopsis thaliana[SDV]Life Sciences [q-bio]ArabidopsisOligosaccharidesPlant Science01 natural sciencesCALCIUM SIGNATURESchemistry.chemical_compoundGene Expression Regulation PlantSYSTEMIC ACQUIRED-RESISTANCEArabidopsisPlant defense against herbivoryArabidopsis thalianaPlant ImmunityGENE-EXPRESSIONCalcium signaling0303 health sciencesIMMUNE-RESPONSESTOBACCO CELLSfood and beveragesCYTOSOLIC CALCIUMElicitorOomycetesReceptors GlutamateBiochemistryHost-Pathogen Interactions[SDE]Environmental SciencesoligogalacturonidesSignal transductionSignal Transductionglutamate receptorHyaloperonospora arabidopsidisBiologyNitric Oxidecalcium signaling03 medical and health sciencesplant defenseGeneticsDNQX[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBOTRYTIS-CINEREA030304 developmental biologyHyaloperonospora arabidopsidisNITRIC-OXIDEArabidopsis ProteinsCell Biologybiology.organism_classificationSALICYLIC-ACIDchemistryPLASMA-MEMBRANEReactive Oxygen Species010606 plant biology & botanyThe Plant Journal
researchProduct

Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea

2019

Abstract The purpose of this study was to assess the activity of Bacillus subtilis BS-2 and peppermint oil against Botrytis cinerea. In this study parameters such as the age and the density of the bacterial culture and the incubation temperature were taken into consideration. Furthermore, the cellulolytic activity of the bacterium was determined. The effect of peppermint oil was evaluated at a concentration range of 0.5-4.0 %. The research was conducted with a dual culture plate method. The influence of B. subtilis BS-2 and peppermint oil on the growth of B. cinerea was evaluated based on the growth rate index. It was noted that the bacterial culture occurred at an initial density of OD 560…

0106 biological sciencesEnvironmental EngineeringbiologyChemistryEcology (disciplines)Biological pest controlBacillus subtilisbiology.organism_classification010603 evolutionary biology01 natural sciences010602 entomologyBotanyEnvironmental ChemistryBotrytis cinereaEcological Chemistry and Engineering S
researchProduct

Composition, Antifungal, Phytotoxic, and Insecticidal Activities of Thymus kotschyanus Essential Oil

2020

Essential oils (EOs) are some of the outstanding compounds found in Thymus that can exert antifungal, phytotoxic, and insecticidal activities, which encourage their exploration and potential use for agricultural and food purposes. The essential oils (EO) obtained from Thymus kotschyanus collected in the East Azerbaijan Province (Iran) were characterized using a gas chromatography-mass spectrometry (GC-MS) analysis. Thymol was the most important compound (60.48%), although 35 other active compounds were identified in the EO. Significant amounts of carvacrol (3.08%), p-cymene (5.56%), and &gamma

0106 biological sciencesInsecticidesAntifungal AgentsPharmaceutical ScienceOryzaephilus surinamensisCyclohexane Monoterpenespost-harvest management01 natural sciencesArticleGas Chromatography-Mass SpectrometryAnalytical Chemistrylaw.inventionThymus Plantlcsh:QD241-441chemistry.chemical_compound0404 agricultural biotechnologylcsh:Organic chemistrylawthymol010608 biotechnologyDrug DiscoveryOils VolatileAnimalsPlant OilsCarvacrolPhysical and Theoretical Chemistryγ-terpeneThymolEssential oilBotrytis cinereabiologySitophilusOrganic Chemistrymonoterpenesfood and beverages04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceFungicideHorticulturechemistryChemistry (miscellaneous)Molecular Medicinecrop pestsPenicillium expansumMolecules
researchProduct

Volatile unsaturated hydrocarbons emitted by seedlings of Brassica species provide host location cues to Bagrada hilaris

2018

Bagrada hilaris Burmeister, is a stink bug native to Asia and Africa and invasive in the United States, Mexico, and more recently, South America. This species can cause serious damage to various vegetable crops in the genus Brassica, with seedlings being particularly susceptible to B. hilaris feeding activity. In this study, the role of volatile organic compounds (VOCs) emitted by seedlings of three Brassica species on the host preference of B. hilaris was evaluated. In dual choice arena and olfactometer bioassays, adult painted bugs preferred B. oleracea var. botrytis and B. napus over B. carinata. Volatiles from B. oleracea seedlings were collected and bioassayed with B. hilaris adults an…

0106 biological sciencesLife CyclesBrassicaPlant Science01 natural scienceschemistry.chemical_compoundBioassayMultidisciplinaryEcologybiologyOrganic CompoundsQREukaryotaPlantsChemistryPhysical SciencesMedicineResearch ArticleNymphfood.ingredientGeneral Science & TechnologyScienceBrassicaHost-Parasite InteractionsHeteropterafoodPlant-Animal InteractionsBotanyHexanesAnimalsNymphBotrytisVolatile Organic CompoundsBiochemistry Genetics and Molecular Biology (all)Bagrada hilarisHost (biology)Plant EcologyEcology and Environmental SciencesOrganic ChemistryBrassica napusOrganismsChemical CompoundsBiology and Life SciencesPlant-Herbivore Interactionsbiology.organism_classificationHydrocarbonsNymphs010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataAgricultural and Biological Sciences (all)chemistryOlfactometerSeedlingsDiterpeneDevelopmental Biology010606 plant biology & botanyPLOS ONE
researchProduct

Integrated signaling network involving calcium, nitric oxide, active oxygen species but not mitogen-activated protein kinases in BcPG1-elicited grape…

2006

We have already reported the identification of the endopolygalacturonase 1 (BcPG1) from Botrytis cinerea as a potent elicitor of defense responses in grapevine, independently of its enzymatic activity. The aim of the present study is the analysis of the signaling pathways triggered by BcPG1 in grapevine cells. Our data indicate that BcPG1 induces a Ca2+ entry from the apoplasm, which triggers a phosphorylation-dependent nitric oxide (NO) production via an enzyme probably related to a NO synthase. Then NO is involved in i) cytosolic calcium homeostasis, by activating Ca2+ release from internal stores and regulating Ca2+ fluxes across the plasma membrane, ii) plasma membrane potential variat…

0106 biological sciencesMAPK/ERK pathwayTime FactorsPhysiology[SDV]Life Sciences [q-bio]Phenylalanine ammonia-lyase01 natural sciencesNitric oxideFungal Proteins03 medical and health scienceschemistry.chemical_compounddepolarizationGene Expression Regulation Plantplant defensenitric oxideVitisdépolarisationProtein kinase ACells Cultured030304 developmental biology0303 health scienceselicitorbiologyelicitor; grapevine; plant defense; nitric oxideKinaseGeneral MedicinePlants Genetically ModifiedElicitorgrapevinechemistryBiochemistryMitogen-activated protein kinasebiology.proteinCalciumBotrytisMitogen-Activated Protein KinasesSignal transductionbotrytis cinereavigneReactive Oxygen SpeciesAgronomy and Crop ScienceSignal Transduction010606 plant biology & botany
researchProduct

Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine

2009

International audience; Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca2+ influx, mitogen-activated protein kinase activation and reactive oxygen species production form part of early signalling…

0106 biological sciencesPOTENTIATIONPhysiologyPlant ScienceFungusmedicine.disease_cause01 natural sciencesPSEUDOMONAS AERUGINOSAMicrobiologySurface-Active Agents03 medical and health sciencesBioremediationBOTRYTIS CINEREA[CHIM.ANAL]Chemical Sciences/Analytical chemistrySpore germinationmedicineGRAPEVINEVitis[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyBotrytis cinerea[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesbiologyPseudomonas aeruginosa[CHIM.ORGA]Chemical Sciences/Organic chemistryfungiPLANT DEFENCE[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRHAMNOLIPIDESpores Fungalbiology.organism_classification[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM][SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyRNA PlantCalciumBotrytisMAMPsGlycolipidsMitogen-Activated Protein KinasesReactive Oxygen SpeciesBacteria010606 plant biology & botany
researchProduct

The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholde…

2014

International audience; The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H2O2 production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2…

0106 biological sciencesPhysiologyBurkholderia phytofirmans[SDV]Life Sciences [q-bio]flg22ArabidopsisColony Count MicrobialPlant Sciencemedicine.disease_cause01 natural sciencesEpitopesArabidopsisEndophytesArabidopsis thalianaPlant ImmunityVitisDisease ResistancePlant Proteins0303 health sciencesbiologyBurkholderia phytofirmansmicrobe-associated molecular pattern (MAMP)Xanthomonas campestrisPGPR[SDE]Environmental SciencesBotrytispattern recognition receptor (PRR)BurkholderiaMolecular Sequence DataContext (language use)Receptors Cell SurfaceMicrobiology03 medical and health sciencesSpecies Specificitymedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyComputer SimulationAmino Acid Sequenceflagellin sensing030304 developmental biologyPlant DiseasesfungiCell MembraneGenetic Complementation TestPathogenic bacteriabiology.organism_classificationVitis viniferaMutationbiology.proteinReactive Oxygen SpeciesFlagellinBacteria010606 plant biology & botanyFlagellinThe New phytologistReferences
researchProduct

Active packaging with antifungal activities.

2016

International audience; There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanopartides coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the ap…

0106 biological sciencesPreservativeFood-additivesAntifungal AgentsControlled-release[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionFood spoilageActive packaging01 natural sciencesIn-vitroCheeseYeasts[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood scienceFood PreservativesNatural productsbiologyChemistryNatural essential oils[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringFood Packaging04 agricultural and veterinary sciencesGeneral MedicineBread040401 food scienceFood packagingCinnamon essential oilAspergillusEssential oilsPackagingPenicilliumfood.ingredientPotassium sorbateEnvironmentShelf lifeMicrobiology0404 agricultural biotechnologyfood010608 biotechnologyFood PreservationBotrytis-cinereaOils VolatileStarch edible filmsMouldChitosanFood additiveFungiPenicilliumbiology.organism_classificationshelf-lifeFoodFood PreservativesNanoparticles[SDV.AEN]Life Sciences [q-bio]/Food and NutritionPreservativesAspergillus-nigerFood ScienceInternational journal of food microbiology
researchProduct