Search results for "Boundary problem"

showing 10 items of 51 documents

Numerical solution of a class of nonlinear boundary value problems for analytic functions

1982

We analyse a numerical method for solving a nonlinear parameter-dependent boundary value problem for an analytic function on an annulus. The analytic function to be determined is expanded into its Laurent series. For the expansion coefficients we obtain an operator equation exhibiting bifurcation from a simple eigenvalue. We introduce a Galerkin approximation and analyse its convergence. A prominent problem falling into the class treated here is the computation of gravity waves of permanent type in a fluid. We present numerical examples for this case.

Nonlinear systemShooting methodApplied MathematicsGeneral MathematicsLaurent seriesNumerical analysisMathematical analysisFree boundary problemGeneral Physics and AstronomyBoundary value problemGalerkin methodMathematicsAnalytic functionZAMP Zeitschrift f�r angewandte Mathematik und Physik
researchProduct

Parallel fictitious domain method for a non‐linear elliptic neumann boundary value problem

1999

Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients. The resulting method is applied to the parallel solution of the subsonic full potential flow problem which is linearized by the Newton method. Good scalability of the method is demonstrated on a Cray T3E distributed memory parallel computer using MPI in communication. Copyright © 1999 John Wiley & Sons, Ltd.

Algebra and Number TheoryShooting methodFictitious domain methodApplied MathematicsMathematical analysisNeumann–Dirichlet methodNeumann boundary conditionFree boundary problemBoundary value problemMixed boundary conditionElliptic boundary value problemMathematicsNumerical Linear Algebra with Applications
researchProduct

\( L^{1} \) existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions

2007

Abstract In this paper we study the questions of existence and uniqueness of weak and entropy solutions for equations of type − div a ( x , D u ) + γ ( u ) ∋ ϕ , posed in an open bounded subset Ω of R N , with nonlinear boundary conditions of the form a ( x , D u ) ⋅ η + β ( u ) ∋ ψ . The nonlinear elliptic operator div a ( x , D u ) is modeled on the p-Laplacian operator Δ p ( u ) = div ( | D u | p − 2 D u ) , with p > 1 , γ and β are maximal monotone graphs in R 2 such that 0 ∈ γ ( 0 ) and 0 ∈ β ( 0 ) , and the data ϕ ∈ L 1 ( Ω ) and ψ ∈ L 1 ( ∂ Ω ) .

Pure mathematicsApplied MathematicsMathematical analysisSemi-elliptic operatorElliptic operatorHalf-period ratiop-LaplacianFree boundary problemBoundary value problemUniquenessLaplace operatorMathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Boundary discretization based on the residual energy using the SGBEM

2007

Abstract The paper has as objective the estimation of the error in the structural analysis performed by using the displacement approach of the Symmetric Galerkin Boundary Element Method (SGBEM) and suggests a strategy able to reduce this error through an appropriate change of the boundary discretization. The body, characterized by a domain Ω and a boundary Γ−, is embedded inside a complementary unlimited domain Ω∞⧹Ω bounded by a boundary Γ+. In such new condition it is possible to perform a separate valuation of the strain energies in the two subdomains through the computation of the work, defined generalized, obtained as the product among nodal and weighted quantities on the actual boundar…

Meshes optimizationGalerkin approachMechanical EngineeringApplied MathematicsMathematical analysisBoundary (topology)Mixed boundary conditionBoundary knot methodSingular boundary methodCondensed Matter PhysicsRobin boundary conditionSymmetric Boundary Element MethodMaterials Science(all)Mechanics of MaterialsModeling and SimulationModelling and SimulationNeumann boundary conditionFree boundary problemGeneral Materials ScienceCauchy boundary conditionMathematicsInternational Journal of Solids and Structures
researchProduct

Analytical Refinement of Sandwich Plate Bending Problem Considering Local Effects-I

1999

Analytic expressions for local flexural characteristics and stresses of sandwich panels under loading by point forces have been found. A discrete-layer model for bending of a three-layer panel with a soft filler is proposed. Contractility of a normal in the model is deduced in terms of a difference between deflections of face layers. The accountability of transverse shear in the filler and the sheets is deduced on piecewise rotation of the normal. Equations of the model having four degrees of displacement freedom are of twelfth order. The specific features of the stress from point forces in cylindrical bending are considered using the operational Laplace method with the generalized Dirac f…

Materials scienceMechanical EngineeringMathematical analysisBoundary problemDirac delta functionGeometry02 engineering and technologyBending of platesBending021001 nanoscience & nanotechnologyStress (mechanics)symbols.namesake020303 mechanical engineering & transports0203 mechanical engineeringFlexural strengthMechanics of MaterialsPure bendingCeramics and Compositessymbols0210 nano-technologySandwich-structured compositeJournal of Sandwich Structures & Materials
researchProduct

Multiplicity results for asymmetric boundary value problems with indefinite weights

2004

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.

lcsh:MathematicsApplied MathematicsMultiplicity resultsMathematical analysis34B15Of the formMultiplicity (mathematics)Mixed boundary conditionlcsh:QA1-939Asymmetric boundary value problem asymptotically linear two-weighted problems eigenvalue theory topological methods rotation number multiplicity resultFree boundary problemBoundary value problemAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Mass-flux-based outlet boundary conditions for the lattice Boltzmann method

2009

We present outlet boundary conditions for the lattice Boltzmann method. These boundary conditions are constructed with a mass-flux-based approach. Conceptually, the mass-flux-based approach provides a mathematical framework from which specific boundary conditions can be derived by enforcing given physical conditions. The object here is, in particular, to explain the mass-flux-based approach. Furthermore, we illustrate, transparently, how boundary conditions can be derived from the emerging mathematical framework. For this purpose, we derive and present explicitly three outlet boundary conditions. By construction, these boundary conditions have an apparent physical interpretation which is fu…

Statistics and ProbabilityMathematical analysisMason–Weaver equationBoundary conformal field theoryStatistical and Nonlinear PhysicsDifferent types of boundary conditions in fluid dynamicsSingular boundary methodBoundary knot methodBoundary conditions in CFDFree boundary problemBoundary value problemStatistical physicsStatistics Probability and UncertaintyMathematicsJournal of Statistical Mechanics: Theory and Experiment
researchProduct

On Some Properties of the Dirichlet Problem at Resonance

2008

Abstract The boundary value problem at resonance 𝑥″ + 𝑥 = 𝑞 sin 𝑡 + 𝑓(𝑡,𝑥,𝑥′), 𝑥(0) = 0, 𝑥(π) = 0, is considered, where 𝑓 : [0,π] × 𝑹2 → 𝑹 is a bounded Carathéodory function, 𝑞 is a parameter. We state the multiplicity results without assuming that 𝑓 has limits.

CombinatoricsDirichlet problemsymbols.namesakeMathematics Subject ClassificationGeneral MathematicsBounded functionDirichlet boundary conditionFree boundary problemsymbolsBoundary value problemFunction (mathematics)Elliptic boundary value problemMathematicsgmj
researchProduct

Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions

2012

The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.

conductive-radiative heat transferelliptic equationMathematical analysisMixed boundary conditionRobin boundary conditionPoincaré–Steklov operatorNonlinear systemElliptic curveNewton methodModeling and SimulationQA1-939Neumann boundary conditionFree boundary problemBoundary value problemAlgorithmMathematicsAnalysisMathematicsMathematical Modelling and Analysis
researchProduct

Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources

2018

In this paper we construct a viscosity solution of a two-phase free boundary problem for a class of fully nonlinear equation with distributed sources, via an adaptation of the Perron method. Our results extend those in [Caffarelli, 1988], [Wang, 2003] for the homogeneous case, and of [De Silva, Ferrari, Salsa, 2015] for divergence form operators with right hand side.

Class (set theory)lcsh:T57-57.97Applied MathematicsPhase (waves)Perron methodfully nonlinear elliptic equationsPerron method| two-phase free boundary problems| fully nonlinear elliptic equationstwo-phase free boundary problemsNonlinear systemSettore MAT/05 - Analisi MatematicaViscosity (programming)lcsh:Applied mathematics. Quantitative methodsFree boundary problemApplied mathematicsViscosity solutionDivergence (statistics)Perron methodMathematical PhysicsAnalysisMathematicsMathematics in Engineering
researchProduct