Search results for "Bounded function"
showing 10 items of 508 documents
Holomorphic Mappings of Bounded Type on (DF)-Spaces
1992
We study the holomorphic functions of bounded type defined on (DF)-spaces. We prove that they are of uniformly bounded type. The space of all these functions is a Frechet space with its natural topology. Some consequences and related results are obtained.
On set-valued cone absolutely summing maps
2009
Spaces of cone absolutely summing maps are generalizations of Bochner spaces Lp(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of \( \mathcal{L}^1 \left[ {\sum ,cbf(X)} \right] \) , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We …
The Bishop–Phelps–Bollobás theorem for L(L1(μ),L∞[0,1])
2011
Abstract We show that the Bishop–Phelps–Bollobas theorem holds for all bounded operators from L 1 ( μ ) into L ∞ [ 0 , 1 ] , where μ is a σ-finite measure.
Convergence of GBS Operators
2018
In [59, 60], Bogel introduced a new concept of Bogel-continuous and Bogel-differentiable functions and also established some important theorems using these concepts. Dobrescu and Matei [80] showed the convergence of the Boolean sum of bivariate generalization of Bernstein polynomials to the B-continuous function on a bounded interval. Subsequently, Badea and Cottin [46] obtained Korovkin theorems for GBS operators.
SCHUR MULTIPLIERS AND SPHERICAL FUNCTIONS ON HOMOGENEOUS TREES
2010
Let X be a homogeneous tree of degree q + 1 (2 ≤ q ≤ ∞) and let ψ : X × X → ℂ be a function for which ψ(x, y) only depends on the distance between x, y ∈ X. Our main result gives a necessary and sufficient condition for such a function to be a Schur multiplier on X × X. Moreover, we find a closed expression for the Schur norm ||ψ||S of ψ. As applications, we obtaina closed expression for the completely bounded Fourier multiplier norm ||⋅||M0A(G) of the radial functions on the free (non-abelian) group 𝔽N on N generators (2 ≤ N ≤ ∞) and of the spherical functions on the q-adic group PGL2(ℚq) for every prime number q.
Finitely Generated PI-Superalgebras with Bounded Multiplicities of the Cocharacters
2005
ABSTRACT In this note, we characterize finitely generated superalgebras satisfying an ordinary polynomial identity whose multiplicities of the supercocharacters are bounded by a constant.
A Structural Theorem for Metric Space Valued Mappings of Φ-bounded Variation
2009
In this paper we introduce the notion of $\Phi$-bounded variation for metric space valued mappings defined on a subset of the real line. Such a notion generalizes the one for real functions introduced by M. Schramm, and many previous generalized variations. We prove a structural theorem for mappings of $\Phi$-bounded variation. As an application we show that each mapping of $\Phi$-bounded variation defined on a subset of $\mathbb{R}$ possesses a $\Phi$-variation preserving extension to the whole real line.
VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS
2008
Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…
PI-algebras with slow codimension growth
2005
Let $c_n(A),\ n=1,2,\ldots,$ be the sequence of codimensions of an algebra $A$ over a field $F$ of characteristic zero. We classify the algebras $A$ (up to PI-equivalence) in case this sequence is bounded by a linear function. We also show that this property is closely related to the following: if $l_n(A), \ n=1,2,\ldots, $ denotes the sequence of colengths of $A$, counting the number of $S_n$-irreducibles appearing in the $n$-th cocharacter of $A$, then $\lim_{n\to \infty} l_n(A)$ exists and is bounded by $2$.
Parsimony hierarchies for inductive inference
2004
AbstractFreivalds defined an acceptable programming system independent criterion for learning programs for functions in which the final programs were required to be both correct and “nearly” minimal size. i.e.. within a computable function of being purely minimal size. Kinber showed that this parsimony requirement on final programs limits learning power. However, in scientific inference, parsimony is considered highly desirable. Alim-computable functionis (by definition) one calculable by a total procedure allowed to change its mind finitely many times about its output. Investigated is the possibility of assuaging somewhat the limitation on learning power resulting from requiring parsimonio…