Search results for "Bounded function"
showing 10 items of 508 documents
Weakly uniformly continuous holomorphic functions and the approximation property
2001
Abstract We study the approximation property for spaces of Frechet and Gâteaux holomorphic functions which are weakly uniformly continuous on bounded sets. We show when U is a balanced open subset of a Baire or barrelled metrizable locally convex space, E , that the space of holomorphic functions which are weakly uniformly continuous on U -bounded sets has the approximation property if and only if the strong dual of E , E ′ b , has the approximation property. We also characterise the approximation property for these spaces of vector-valued holomorphic functions in terms of the tensor product of the corresponding space of scalar-valued holomorphic functions and the range space.
The spectra of some algebras of analytic mappings
1999
Abstract Let E be a Banach space with the approximation property and let F be a Banach algebra with identity. We study the spectrum of the algebra H b(E, F) of all holomorphic mappings f : E → F that are bounded on the bounded subsets of E.
*-Representations, seminorms and structure properties of normed quasi*-algebras
2008
The class of -representations of a normed quasi -algebra (X;A0) is in- vestigated, mainly for its relationship with the structure of (X;A0). The starting point of this analysis is the construction of GNS-like -representations of a quasi -algebra (X;A0) dened by invariant positive sesquilinear forms. The family of bounded invariant positive sesquilinear forms denes some seminorms (in some cases, C -seminorms) that provide useful information on the structure of (X;A0) and on the continuity properties of its -representations. 1. Introduction. A quasi -algebra is a couple (X;A0), where X is a vector space with involution , A0 is a -algebra and a vector subspace of X, and X is an A0-bimodule who…
Stochastic differential equations with coefficients in Sobolev spaces
2010
We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…
On the Zero-Set of Real Polynomials in Non-Separable Banach Spaces
2007
We show constructively that every homogeneous polynomial that is weakly continuous on the bounded subsets of a real Banach space whose dual is not weak ∗ separable admits a closed linear subspace whose dual is not weak ∗ -separable either where the polynomial vanishes. We also prove that the same can be said for vectorvalued polynomials. Finally, we study the validity of this result for continuous 2homogeneous polynomials.
Polynomial growth of the codimensions: a characterization
2009
Let A A be a not necessarily associative algebra over a field of characteristic zero. Here we characterize the T-ideal of identities of A A in case the corresponding sequence of codimensions is polynomially bounded.
Geometric Properties of Planar BV -Extension Domains
2009
We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.
Efficient algorithm for learning simple regular expressions from noisy examples
1994
We present an efficient algorithm for finding approximate repetitions in a given sequence of characters. First, we define a class of simple regular expressions which are of star-height one and do not contain union operations, and a stochastic mutation process of a given length over a string of characters. Then, assuming that a given string of characters is obtained corrupted by the defined mutation process from some long enough word generated by a simple regular expression, we try to restore the expression. We prove that to within some reasonable accuracy it is always possible if the length of the mutation process is bounded comparing to the length of the example. We provide an algorithm by…
Cluster values of holomorphic functions of bounded type
2015
We study the cluster value theorem for Hb(X), the Fréchet algebra of holomorphic functions bounded on bounded sets of X. We also describe the (size of) fibers of the spectrum of Hb(X). Our results are rather complete whenever X has an unconditional shrinking basis and for X = ℓ1. As a byproduct, we obtain results on the spectrum of the algebra of all uniformly continuous holomorphic functions on the ball of ℓ1. Fil: Aron, Richard Martin. Kent State University; Estados Unidos Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Lassalle, S…
On operator valued sequences of multipliers and R-boundedness
2007
AbstractIn recent papers (cf. [J.L. Arregui, O. Blasco, (p,q)-Summing sequences, J. Math. Anal. Appl. 274 (2002) 812–827; J.L. Arregui, O. Blasco, (p,q)-Summing sequences of operators, Quaest. Math. 26 (2003) 441–452; S. Aywa, J.H. Fourie, On summing multipliers and applications, J. Math. Anal. Appl. 253 (2001) 166–186; J.H. Fourie, I. Röntgen, Banach space sequences and projective tensor products, J. Math. Anal. Appl. 277 (2) (2003) 629–644]) the concept of (p,q)-summing multiplier was considered in both general and special context. It has been shown that some geometric properties of Banach spaces and some classical theorems can be described using spaces of (p,q)-summing multipliers. The p…