6533b834fe1ef96bd129ce85

RESEARCH PRODUCT

Stochastic differential equations with coefficients in Sobolev spaces

Shizan FangAnton ThalmaierDejun LuoDejun Luo

subject

Discrete mathematicsPure mathematicsOrnstein–Uhlenbeck semigroupLebesgue measureSobolev space coefficientsProbability (math.PR)Density60H10 (Primary) 34F05 (Secondary) 60J60 37C10Density estimatePathwise uniquenessGaussian measureLipschitz continuitySobolev spaceStochastic differential equationStochastic flowsGaussian measureBounded functionFOS: Mathematics: Mathematics [G03] [Physical chemical mathematical & earth Sciences]Vector fieldUniqueness: Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre]AnalysisMathematics - ProbabilityMathematics

description

We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-forward $(X_t)_# \gamma_d$ admits a density with respect to $\gamma_d$. In particular, if the coefficients are bounded Lipschitz continuous, then $X_t$ leaves the Lebesgue measure $\Leb_d$ quasi-invariant. In the case (ii), we develop a method used by G. Crippa and C. De Lellis for ODE and implemented by X. Zhang for SDE, to establish the existence and uniqueness of stochastic flow of maps.

http://arxiv.org/abs/1001.3007