0000000000529426

AUTHOR

Dejun Luo

showing 6 related works from this author

Regularity of solutions to differential equations with non-Lipschitz coefficients

2008

AbstractWe study the ordinary and stochastic differential equations whose coefficients satisfy certain non-Lipschitz conditions, namely, we study the behaviors of small subsets under the flows generated by these equations.

Mathematics(all)Hölder continuousGeneral MathematicsMathematical analysisHausdorff dimensionNon-Lipschitz conditionMethod of undetermined coefficientsExamples of differential equationsStochastic partial differential equationDifferential equationCollocation methodC0-semigroupDifferential algebraic equationMathematicsSeparable partial differential equationNumerical partial differential equationsBulletin des Sciences Mathématiques
researchProduct

Flow of Homeomorphisms and Stochastic Transport Equations

2007

Abstract We consider Stratonovich stochastic differential equations with drift coefficient A 0 satisfying only the condition of continuity where r is a positive C 1 function defined on a neighborhood ]0, c 0] of 0 such that (Osgood condition), and s → r(s) is decreasing while s → sr(s 2) is increasing. We prove that the equation defines a flow of homeomorphisms if the diffusion coefficients A 1,…, A N are in . If , we prove limit theorems for Wong–Zakai approximation as well as for regularizing the drift A 0. As an application, we solve a class of stochastic transport equations.

Statistics and ProbabilityClass (set theory)Stochastic differential equationFlow (mathematics)Stochastic processApplied MathematicsMathematical analysisLimit (mathematics)Function (mathematics)Statistics Probability and UncertaintyDiffusion (business)HomeomorphismMathematicsStochastic Analysis and Applications
researchProduct

Heat semi-group and generalized flows on complete Riemannian manifolds

2011

Abstract We will use the heat semi-group to regularize functions and vector fields on Riemannian manifolds in order to develop Di Perna–Lions theory in this setting. Malliavinʼs point of view of the bundle of orthonormal frames on Brownian motions will play a fundamental role. As a byproduct we will construct diffusion processes associated to an elliptic operator with singular drift.

Mathematics(all)Group (mathematics)General Mathematics010102 general mathematicsMathematical analysisRiemannian geometry01 natural sciences010104 statistics & probabilitysymbols.namesakeElliptic operatorBundleRicci-flat manifoldsymbolsVector fieldOrthonormal basis0101 mathematicsBrownian motionMathematicsBulletin des Sciences Mathématiques
researchProduct

Stochastic differential equations with coefficients in Sobolev spaces

2010

We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…

Discrete mathematicsPure mathematicsOrnstein–Uhlenbeck semigroupLebesgue measureSobolev space coefficientsProbability (math.PR)Density60H10 (Primary) 34F05 (Secondary) 60J60 37C10Density estimatePathwise uniquenessGaussian measureLipschitz continuitySobolev spaceStochastic differential equationStochastic flowsGaussian measureBounded functionFOS: Mathematics: Mathematics [G03] [Physical chemical mathematical & earth Sciences]Vector fieldUniqueness: Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre]AnalysisMathematics - ProbabilityMathematics
researchProduct

Isotropic stochastic flow of homeomorphisms on Rd associated with the critical Sobolev exponent

2008

Abstract We consider the critical Sobolev isotropic Brownian flow in R d ( d ≥ 2 ) . On the basis of the work of LeJan and Raimond [Y. LeJan, O. Raimond, Integration of Brownian vector fields, Ann. Probab. 30 (2002) 826–873], we prove that the corresponding flow is a flow of homeomorphisms. As an application, we construct an explicit solution, which is also unique in a certain space, to the stochastic transport equation when the associated Gaussian vector fields are divergence free.

Statistics and ProbabilityBasis (linear algebra)Stochastic processApplied MathematicsMathematical analysisSpace (mathematics)Sobolev spaceStochastic differential equationMathematics::ProbabilityFlow (mathematics)Modeling and SimulationVector fieldBrownian motionMathematicsStochastic Processes and their Applications
researchProduct

Transport equations and quasi-invariant flows on the Wiener space

2010

Abstract We shall investigate on vector fields of low regularity on the Wiener space, with divergence having low exponential integrability. We prove that the vector field generates a flow of quasi-invariant measurable maps with density belonging to the space L log L . An explicit expression for the density is also given.

Mathematics(all)General MathematicsMathematical analysisIntegral representation theorem for classical Wiener spaceMalliavin calculusDensity estimationSpace (mathematics)Quasi-invariant flowsDivergenceCommutator estimateFlow (mathematics)Transport equationsWiener spaceClassical Wiener spaceVector fieldInvariant (mathematics)MathematicsBulletin des Sciences Mathématiques
researchProduct