Search results for "Bounded function"
showing 10 items of 508 documents
Finite-Timel1-Gain Control for Positive Switched Systems with Time-Varying Delay via Delta Operator Approach
2014
This paper is concerned with the problem of finite-timel1-gain control for positive switched systems with time-varying delay via delta operator approach. Firstly, sufficient conditions which can guarantee thel1-gain finite-time boundedness of the underlying system are given by using the average dwell time approach and constructing an appropriate copositive type Lyapunov-Krasovskii functional in delta domain. Moreover, the obtained conditions can unify some previously suggested relevant results seen in literature of both continuous and discrete systems into the delta operator framework. Then, based on the results obtained, a state feedback controller is designed to ensure that the resulting …
Dynamic programming for 2-D discrete linear systems
1989
The authors calculate the optimal control of 2-D discrete linear systems using a dynamic programming method. It is assumed that the system is described with Roesser's state-space equations for which a 2-D sequence of inputs minimizing the given performance criterion is calculated. The method is particularly suitable for problems with bounded states and controls, although it can also be applied for unbounded cases. One numerical example is given. >
Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem
2015
A dynamic time window relates to two operations that must be executed within a given time meaning that the difference between the points in time when the two operations are performed is bounded from above. The most prevalent context of dynamic time windows is when precedence is given for the two operations so that it is a priori specified that one operation must take place before the other. A prominent vehicle routing problem with dynamic time windows and precedence is the dial-a-ride problem (DARP), where user-specified transportation requests from origin to destination points must be serviced. The paper presents a new branch-and-cut-and-price solution approach for the DARP, the prototypi…
Massive evaluation and analysis of Poincar�� recurrences on grids of initial data: a tool to map chaotic diffusion
2020
We present a novel numerical method aimed to characterize global behaviour, in particular chaotic diffusion, in dynamical systems. It is based on an analysis of the Poincar\'e recurrence statistics on massive grids of initial data or values of parameters. We concentrate on Hamiltonian systems, featuring the method separately for the cases of bounded and non-bounded phase spaces. The embodiments of the method in each of the cases are specific. We compare the performances of the proposed Poincar\'e recurrence method (PRM) and the custom Lyapunov exponent (LE) methods and show that they expose the global dynamics almost identically. However, a major advantage of the new method over the known g…
Vibrations of a continuous web on elastic supports
2017
We consider an infinite, homogenous linearly elastic beam resting on a system of linearly elastic supports, as an idealized model for a paper web in the middle of a cylinder-based dryer section. We obtain closed-form analytical expressions for the eigenfrequencies and the eigenmodes. The frequencies increase as the support rigidity is increased. Each frequency is bounded from above by the solution with absolutely rigid supports, and from below by the solution in the limit of vanishing support rigidity. Thus in a real system, the natural frequencies will be lower than predicted by commonly used models with rigid supports. peerReviewed
An inverse problem for the fractional Schrödinger equation in a magnetic field
2020
This paper shows global uniqueness in an inverse problem for a fractional magnetic Schrodinger equation (FMSE): an unknown electromagnetic field in a bounded domain is uniquely determined up to a natural gauge by infinitely many measurements of solutions taken in arbitrary open subsets of the exterior. The proof is based on Alessandrini's identity and the Runge approximation property, thus generalizing some previous works on the fractional Laplacian. Moreover, we show with a simple model that the FMSE relates to a long jump random walk with weights.
Boundary accessibility and elliptic harmonic measures
1988
Suppose G is a bounded domain in R n such that the complement of G satisfies a capacity dcnsity condition. It is shown that all elliptic measures in G have a support set with Moreover, the capacity density condition cannot be removed. A nonlinear version of the result is also given.
Least energy solutions to the Dirichlet problem for the equation −D(u) = f (x, u)
2017
Let be a bounded smooth domain in RN. We prove a general existence result of least energy solutions and least energy nodal ones for the problem −u = f(x, u) in u = 0 on ∂ (P) where f is a Carathéodory function. Our result includes some previous results related to special cases of f . Finally, we propose some open questions concerning the global minima of the restriction on the Nehari manifold of the energy functional associated with (P) when the nonlinearity is of the type f(x, u) = λ|u| s−2u − μ|u| r−2u, with s, r ∈ (1, 2) and λ,μ > 0.
Fault Detection of Networked Control Systems Based on Sliding Mode Observer
2013
Published version of an article in the journal: Mathematical Problems in Engineering. Also availeble from the publisher at: http://dx.doi.org/10.1155/2013/506217 Open Access This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is proposed. Then the sufficient conditions of sliding motion asymptotical stability are derived by means of the linear matrix inequality (LMI) approach on a designed surface. Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing the…
2014
The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF) neural networks are applied to approximate packaged unknown nonlinearities and then an adaptive neural decentralized controller is systematically derived without requiring any information on the boundedness of dead zone parameters (slopes and break points). It is proven that the developed control scheme can ensure that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded in the sense of mean square. Simulation …