Search results for "Bounded function"

showing 10 items of 508 documents

Objective function design for robust optimality of linear control under state-constraints and uncertainty

2009

We consider a model for the control of a linear network flow system with unknown but bounded demand and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function that makes robust optimal the policy represented by the so-called linear saturated feedback control. We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations. © 2009 EDP Sciences, SMAI.

Flow control (data)Mathematical optimizationControl and OptimizationControl (management)State (functional analysis)Optimal control viscosity solutions differential games switching flow control networksOptimal controlComputational MathematicsControl and Systems EngineeringControl theoryViscosity (programming)Bounded functionDifferential gameMathematicsLinear control
researchProduct

Locally convex quasi *-algebras with sufficiently many *-representations

2012

AbstractThe main aim of this paper is the investigation of conditions under which a locally convex quasi ⁎-algebra (A[τ],A0) attains sufficiently many (τ,tw)-continuous ⁎-representations in L†(D,H), to separate its points. Having achieved this, a usual notion of bounded elements on A[τ] rises. On the other hand, a natural order exists on (A[τ],A0) related to the topology τ, that also leads to a kind of bounded elements, which we call “order bounded”. What is important is that under certain conditions the latter notion of boundedness coincides with the usual one. Several nice properties of order bounded elements are extracted that enrich the structure of locally convex quasi ⁎-algebras.

Fully representable quasi .-algebraApplied MathematicsBounded elementStructure (category theory)Regular polygonQuasi ⁎-algebraCombinatoricsFully representable quasi ⁎-algebraSettore MAT/05 - Analisi MatematicaBounded functionQuasi *-algebraOrder (group theory)Representable linear functionalAnalysisTopology (chemistry)Mathematics
researchProduct

Edelstein-Suzuki-type resuls for self-mappings in various abstract spaces with application to functional equations

2016

Abstract The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.

G-metric spaceG-cone metric spaceBasis (linear algebra)General Mathematics010102 general mathematicsquasi-metric spaceGeneral Physics and AstronomyFixed-point theoremFixed pointType (model theory)Edelstein’s theorem01 natural sciences010101 applied mathematicsAlgebraCompact spacefixed pointSettore MAT/05 - Analisi MatematicaBounded functionCompleteness (order theory)Functional equation0101 mathematicsSuzuki’s theorem.Mathematics
researchProduct

Classifying G-graded algebras of exponent two

2019

Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …

General Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)0102 computer and information sciencesGraded algebras Exponent GrowthCharacterization (mathematics)01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraInteger010201 computation theory & mathematicsBounded functionExponentPolynomial identity exponent codimension graded algebra0101 mathematicsVariety (universal algebra)Abelian groupMathematics
researchProduct

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Bounded solutions to the 1-Laplacian equation with a critical gradient term

2012

General MathematicsBounded functionMathematical analysisLaplace operator1-laplacian; degenerate elliptic equations; functions of bounded variations; gradient term with natural growthMathematicsTerm (time)Asymptotic Analysis
researchProduct

A note on Serrin's overdetermined problem

2014

We consider the solution of the torsion problem $$−Δu = N \quad\mathrm{in}\quad Ω,\quad u = 0\quad\mathrm{on}\quad ∂Ω,$$ where Ω is a bounded domain in RN. ¶ Serrin's celebrated symmetry theorem states that, if the normal derivative uν is constant on ∂Ω, then Ω must be a ball. In [6], it has been conjectured that Serrin's theorem may be obtained by stability in the following way: first, for the solution u of the torsion problem prove the estimate $$r_e − r_i ≤ C_t\Bigl(\max_{\Gamma_t} u-\min_{\Gamma_t} u\Bigr)$$ for some constant Ct depending on t, where re and ri are the radii of an annulus containing ∂Ω and Γt is a surface parallel to ∂Ω at distance t and sufficiently close to ∂Ω secondly…

General MathematicsMathematical analysisAnnulus (mathematics)Surface (topology)CombinatoricsOverdetermined systemMathematics - Analysis of PDEsSerrin’s problem Parallel surfaces overdetermined problems method of moving planes stability.Settore MAT/05 - Analisi MatematicaBounded functionDomain (ring theory)FOS: MathematicsTorsion (algebra)Ball (mathematics)Constant (mathematics)Analysis of PDEs (math.AP)Mathematics
researchProduct

Bounded Seed-AGI

2014

Four principal features of autonomous control systems are left both unaddressed and unaddressable by present-day engineering methodologies: (1) The ability to operate effectively in environments that are only partially known at design time; (2) A level of generality that allows a system to re-assess and re-define the fulfillment of its mission in light of unexpected constraints or other unforeseen changes in the environment; (3) The ability to operate effectively in environments of significant complexity; and (4) The ability to degrade gracefully—how it can continue striving to achieve its main goals when resources become scarce, or in light of other expected or unexpected constraining fact…

GeneralityWork (electrical)Computer scienceArtificial general intelligenceBlueprintbusiness.industryBounded functionPrincipal (computer security)Control (management)Dynamic priority schedulingSoftware engineeringbusinessSelf programming AGI
researchProduct

On the fractional probabilistic Taylor's and mean value theorems

2016

In order to develop certain fractional probabilistic analogues of Taylor's theorem and mean value theorem, we introduce the nth-order fractional equilibrium distribution in terms of the Weyl fractional integral and investigate its main properties. Specifically, we show a characterization result by which the nth-order fractional equilibrium distribution is identical to the starting distribution if and only if it is exponential. The nth-order fractional equilibrium density is then used to prove a fractional probabilistic Taylor's theorem based on derivatives of Riemann-Liouville type. A fractional analogue of the probabilistic mean value theorem is thus developed for pairs of nonnegative rand…

Generalized Taylor’s formulaMean value theoremSurvival bounded order01 natural sciencesStochastic ordering010104 statistics & probabilityCharacterization of exponential distribution; Fractional calculus; Fractional equilibrium distribution; Generalized Taylor’s formula; Mean value theorem; Survival bounded orderFOS: MathematicsCharacterization of exponential distributionApplied mathematics0101 mathematicsMathematicsComputer Science::Information RetrievalApplied MathematicsProbability (math.PR)010102 general mathematicsProbabilistic logic60E99 26A33 26A24Fractional calculusFractional equilibrium distributionFractional calculusExponential functionDistribution (mathematics)Bounded functionMean value theorem (divided differences)Random variableAnalysisMathematics - Probability
researchProduct

Hajłasz–Sobolev imbedding and extension

2011

Abstract The author establishes some geometric criteria for a Hajlasz–Sobolev M ˙ ball s , p -extension (resp. M ˙ ball s , p -imbedding) domain of R n with n ⩾ 2 , s ∈ ( 0 , 1 ] and p ∈ [ n / s , ∞ ] (resp. p ∈ ( n / s , ∞ ] ). In particular, the author proves that a bounded finitely connected planar domain Ω is a weak α -cigar domain with α ∈ ( 0 , 1 ) if and only if F ˙ p , ∞ s ( R 2 ) | Ω = M ˙ ball s , p ( Ω ) for some/all s ∈ [ α , 1 ) and p = ( 2 − α ) / ( s − α ) , where F ˙ p , ∞ s ( R 2 ) | Ω denotes the restriction of the Triebel–Lizorkin space F ˙ p , ∞ s ( R 2 ) on Ω .

Hajłasz–Sobolev extensionHajłasz–Sobolev imbeddingApplied Mathematics010102 general mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesSobolev spaceCombinatoricsHajłasz–Sobolev spaceUniform domainBounded function0103 physical sciencesWeak cigar domain010307 mathematical physicsBall (mathematics)Local linear connectivity0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct