Search results for "Bounded function"

showing 10 items of 508 documents

Generalized Browder’s Theorem and SVEP

2007

A bounded operator \(T \in L(X), X\) a Banach space, is said to verify generalized Browder’s theorem if the set of all spectral points that do not belong to the B-Weyl’s spectrum coincides with the set of all poles of the resolvent of T, while T is said to verify generalized Weyl’s theorem if the set of all spectral points that do not belong to the B-Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues. In this article we characterize the bounded linear operators T satisfying generalized Browder’s theorem, or generalized Weyl’s theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H0(λI − T) as λ belongs to certain …

Unbounded operatorDiscrete mathematicsPure mathematicsGeneral MathematicsSpectrum (functional analysis)Banach spaceBounded operatorSettore MAT/05 - Analisi MatematicaBounded functionSVEP Fredholm theory generalized Weyl’s theorem and generalized Browder’s theoremMathematics::Representation TheoryBounded inverse theoremEigenvalues and eigenvectorsResolventMathematicsMediterranean Journal of Mathematics
researchProduct

Induced and reduced unbounded operator algebras

2012

The induction and reduction precesses of an O*-vector space \({{\mathfrak M}}\) obtained by means of a projection taken, respectively, in \({{\mathfrak M}}\) itself or in its weak bounded commutant \({{\mathfrak M}^\prime_{\rm w}}\) are studied. In the case where \({{\mathfrak M}}\) is a partial GW*-algebra, sufficient conditions are given for the induced and the reduced spaces to be partial GW*-algebras again.

Unbounded operatorDiscrete mathematicsReduction (recursion theory)Applied MathematicsMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)Space (mathematics)Centralizer and normalizerPrime (order theory)CombinatoricsProjection (relational algebra)Bounded functionInduced representationreduced representation: unbounded operator algebrasFOS: MathematicsOperator Algebras (math.OA)Mathematics::Representation TheoryMathematical PhysicsMathematics
researchProduct

Riesz-like bases in rigged Hilbert spaces

2015

The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space $\D[t] \subset \H \subset \D^\times[t^\times]$. A Riesz-like basis, in particular, is obtained by considering a sequence $\{\xi_n\}\subset \D$ which is mapped by a one-to-one continuous operator $T:\D[t]\to\H[\|\cdot\|]$ into an orthonormal basis of the central Hilbert space $\H$ of the triplet. The operator $T$ is, in general, an unbounded operator in $\H$. If $T$ has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces.

Unbounded operatorMathematics::Classical Analysis and ODEsInverse01 natural sciencesCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basisRigged Hilbert spaces0101 mathematicsMathematicsBasis (linear algebra)Applied MathematicsOperator (physics)010102 general mathematicsHilbert spaceRigged Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbols010307 mathematical physicsAnalysisRiesz basi
researchProduct

A bounded version of bosonic creation and annihilation operators and their related quasi-coherent states

2007

Coherent states are usually defined as eigenstates of an unbounded operator, the so-called annihilation operator. We propose here possible constructions of {\em quasi-coherent states}, which turn out to be {\em quasi} eigenstate of a \underline{bounded} operator related to an annihilation-like operator. We use this bounded operator to construct a sort of modified harmonic oscillator and we analyze the dynamics of this oscillator from an algebraic point of view.

Unbounded operatorPhysicsOperator (physics)Creation and annihilation operatorsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)bosonic operatorBounded operatorBounded functionCoherent statesCoherent statesSettore MAT/07 - Fisica MatematicaEigenvalues and eigenvectorsHarmonic oscillatorMathematical PhysicsMathematical physics
researchProduct

Partial O*-Algebras

2002

This chapter is devoted to the investigation of partial O*-algebras of closable linear operators defined on a common dense domain in a Hilbert space. Section 2.1 introduces of O- and O*-families, O- and O*-vector spaces, partial O*-algebras and O*-algebras. Partial O*-algebras and strong partial O*-algebras are defined by the weak and the strong multiplication. Section 2.2 describes four canonical extensions (closure, full-closure, adjoint, biadjoint) of O*-families and defines the notions of closedness and full-closedness (self-adjointness, integrability) of O*-families in analogy with that of closed (self-adjoint) operators. Section 2.3 deals with two weak bounded commutants M′w and M′qw …

Unbounded operatorPure mathematicssymbols.namesakeSection (category theory)Bounded functionClosure (topology)Hilbert spacesymbolsBicommutantDomain (mathematical analysis)Vector spaceMathematics
researchProduct

Operator martingale decomposition and the Radon-Nikodym property in Banach spaces

2010

Abstract We consider submartingales and uniform amarts of maps acting between a Banach lattice and a Banach lattice or a Banach space. In this measure-free setting of martingale theory, it is known that a Banach space Y has the Radon–Nikodým property if and only if every uniformly norm bounded martingale defined on the Chaney–Schaefer l-tensor product E ⊗ ˜ l Y , where E is a suitable Banach lattice, is norm convergent. We present applications of this result. Firstly, an analogues characterization for Banach lattices Y with the Radon–Nikodým property is given in terms of a suitable set of submartingales (supermartingales) on E ⊗ ˜ l Y . Secondly, we derive a Riesz decomposition for uniform …

Uniform amartPure mathematicsDinculeanu operatorApproximation propertyEberlein–Šmulian theoremBanach spaceRadon–Nikodým propertyFinite-rank operatorBanach manifoldBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým propertySettore MAT/05 - Analisi MatematicaLp spaceC0-semigroupBanach lattice Banach space Bochner norm Cone absolutely summing operator Convergent martingale Convergent submartingale Dinculeanu operator Radon–Nikodým property Uniform amartMathematicsDiscrete mathematicsMathematics::Functional AnalysisBanach spaceApplied MathematicsConvergent martingaleConvergent submartingaleBanach latticeBochner normCone absolutely summing operatorBounded functionAnalysis
researchProduct

The Daugavet equation for polynomials

2007

In this paper we study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space X, i.e. when the equality ‖Id + P‖ = 1 + ‖P‖ is satisfied for all weakly compact polynomials P : X −→ X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation max |ω|=1 ‖Id + ω P‖ = 1 + ‖P‖ for polynomials P : X −→ X. We show that this equation holds for every polynomial on the complex space X = C(K) (K arbitrary) with values in X. The result is not true in the real case. Finally, we study the Daugavet and the alternative Daugavet equations for k-h…

Unit sphereAlgebraPure mathematicsCompact spaceComplex spaceGeneral MathematicsBounded functionBanach spaceHausdorff spaceNumerical rangeBounded operatorMathematicsStudia Mathematica
researchProduct

Bloch functions on the unit ball of an infinite dimensional Hilbert space

2015

The Bloch space has been studied on the open unit disk of C and some ho- mogeneous domains of C n . We dene Bloch functions on the open unit ball of a Hilbert space E and prove that the corresponding space B(BE) is invariant under composition with the automorphisms of the ball, leading to a norm that- modulo the constant functions - is automorphism invariant as well. All bounded analytic functions on BE are also Bloch functions. ones, resulting the fact that if for a given n; the restrictions of the function to the n-dimensional subspaces have their Bloch norms uniformly bounded, then the function is a Bloch one and conversely. We also introduce an equivalent norm forB(BE) obtained by repla…

Unit sphereBloch spaceBloch sphereBounded functionMathematical analysisBloch functionUniform boundednessBall (mathematics)Infinite dimensional holomorphyAnalysisMathematicsAnalytic functionBloch wave
researchProduct

Hamel-isomorphic images of the unit ball

2010

In this article we consider linear isomorphisms over the field of rational numbers between the linear spaces ℝ2 and ℝ. We prove that if f is such an isomorphism, then the image by f of the unit disk is a strictly nonmeasurable subset of the real line, which has different properties than classical non-measurable subsets of reals. We shall also consider the question whether all images of bounded measurable subsets of the plane via a such mapping are non-measurable (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Unit sphereDiscrete mathematicsRational numberUniversally measurable setBounded functionField (mathematics)IsomorphismReal lineUnit diskMathematicsMathematical Logic Quarterly
researchProduct

Analytic structure in fibers of H∞(Bc0)

2020

Abstract Let H ∞ ( B c 0 ) be the algebra of all bounded holomorphic functions on the open unit ball of c 0 and M ( H ∞ ( B c 0 ) ) the spectrum of H ∞ ( B c 0 ) . We prove that for any point z in the closed unit ball of l ∞ there exists an analytic injection of the open ball B l ∞ into the fiber of z in M ( H ∞ ( B c 0 ) ) , which is an isometry from the Gleason metric of B l ∞ to the Gleason metric of M ( H ∞ ( B c 0 ) ) . We also show that, for some Banach spaces X, B l ∞ can be analytically injected into the fiber M z ( H ∞ ( B X ) ) for every point z ∈ B X .

Unit sphereOpen unitApplied Mathematics010102 general mathematicsBanach spaceHolomorphic function01 natural sciences010101 applied mathematicsCombinatoricsBounded functionBall (mathematics)0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct