Search results for "Bounded operator"

showing 10 items of 60 documents

Dynamics and spectra of composition operators on the Schwartz space

2017

[EN] In this paper we study the dynamics of the composition operators defined in the Schwartz space of rapidly decreasing functions. We prove that such an operator is never supercyclic and, for monotonic symbols, it is power bounded only in trivial cases. For a polynomial symbol ¿ of degree greater than one we show that the operator is mean ergodic if and only if it is power bounded and this is the case when ¿ has even degree and lacks fixed points. We also discuss the spectrum of composition operators.

Space of rapidly decreasing functionsMathematics::Functional AnalysisPure mathematicsComposition operator010102 general mathematicsSpectrum (functional analysis)Power bounded operatorMonotonic functionFixed pointMean ergodic composition operator01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsOperator (computer programming)Schwartz spaceBounded functionSpectrumFOS: MathematicsErgodic theory0101 mathematicsMATEMATICA APLICADAAnalysisMathematics
researchProduct

Weyl Type Theorems for Left and Right Polaroid Operators

2010

A bounded operator defined on a Banach space is said to be polaroid if every isolated point of the spectrum is a pole of the resolvent. In this paper we consider the two related notions of left and right polaroid, and explore them together with the condition of being a-polaroid. Moreover, the equivalences of Weyl type theorems and generalized Weyl type theorems are investigated for left and a-polaroid operators. As a consequence, we obtain a general framework which allows us to derive in a unified way many recent results, concerning Weyl type theorems (generalized or not) for important classes of operators.

Teoremi di Weyl operatori polaroidi SVEPLeft and rightPure mathematicsAlgebra and Number TheorySpectrum (functional analysis)Banach spaceType (model theory)Bounded operatorAlgebraIsolated pointSettore MAT/05 - Analisi MatematicaAnalysisResolventMathematicsIntegral Equations and Operator Theory
researchProduct

Continuous frames for unbounded operators

2021

Few years ago G\u{a}vru\c{t}a gave the notions of $K$-frame and atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$ in order to decompose $\mathcal{R}(K)$, the range of $K$, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator on a Hilbert space $A$ in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.

Unbounded operator42C15 47A05 47A63 41A65Pure mathematicsContinuous A-frames Continuous weak A-frames Continuous atomic systems Unbounded operatorsAlgebra and Number TheoryAtomic system010102 general mathematicsHilbert spaceOrder (ring theory)01 natural sciencesBounded operatorFunctional Analysis (math.FA)Mathematics - Functional AnalysisRange (mathematics)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencessymbolsFOS: Mathematics0101 mathematics010306 general physicsAnalysisMathematics
researchProduct

Fredholm operator families ?II

1984

First, we give a characterization of semi-Fredholm operators (i.e. those which are left or right invertible modulo compact operators) on Hausdorff tvs which generalizes the usual one in the context of Banach spaces. Then we consider a class of semi-Fredholm operator families on tvs which include both the "classical" semi-Fredholm operator valued functions on Banach spaces (continuous in the norm sense), and families of the form T + Kn, where Kn is a collectively compact sequence which converges strongly to O. For these families we prove a general stability theorem.

Unbounded operatorDiscrete mathematicsMathematics::Functional AnalysisAlgebra and Number TheoryNuclear operatorApproximation propertyFredholm operatorFinite-rank operatorCompact operatorAnalysisStrictly singular operatorCompact operator on Hilbert spaceMathematicsIntegral Equations and Operator Theory
researchProduct

Factorization of strongly (p,sigma)-continuous multilinear operators

2013

We introduce the new ideal of strongly-continuous linear operators in order to study the adjoints of the -absolutely continuous linear operators. Starting from this ideal we build a new multi-ideal by using the composition method. We prove the corresponding Pietsch domination theorem and we present a representation of this multi-ideal by a tensor norm. A factorization theorem characterizing the corresponding multi-ideal - which is also new for the linear case - is given. When applied to the case of the Cohen strongly -summing operators, this result gives also a new factorization theorem.

Unbounded operatorDiscrete mathematicsMultilinear mapPrimary 46A32Algebra and Number TheoryMathematics::Commutative AlgebraTensor normSpectral theoremOperator theoryPietsch domination theoremMultilinear operatorsymbols.namesakeFactorizationNorm (mathematics)Weierstrass factorization theoremsymbolsSecondary 47B10FactorizationMATEMATICA APLICADAOperator normAbsolutely continuous operatorsMathematics
researchProduct

Property (w) for perturbations of polaroid operators

2008

Abstract A bounded linear operator T ∈ L ( X ) acting on a Banach space satisfies property ( w ) , a variant of Weyl’s theorem, if the complement in the approximate point spectrum σ a ( T ) of the Weyl essential approximate-point spectrum σ wa ( T ) is the set of all isolated points of the spectrum which are eigenvalues of finite multiplicity. In this note, we study the stability of property ( w ) for a polaroid operator T acting on a Banach space, under perturbations by finite rank operators, by nilpotent operators and, more generally, by algebraic operators commuting with T.

Unbounded operatorDiscrete mathematicsNumerical AnalysisPure mathematicsAlgebra and Number TheoryApproximation propertyProperty (w)Weyl’s theoremsFredholm operatorSpectrum (functional analysis)Banach spaceProperty (w) Weyl’s theorems Polaroid operatorsFinite-rank operatorOperator theoryBounded operatorPolaroid operatorsDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematicsLinear Algebra and its Applications
researchProduct

Operators which have a closed quasi-nilpotent part

2002

We find several conditions for the quasi-nilpotent part of a bounded operator acting on a Banach space to be closed. Most of these conditions are established for semi-Fredholm operators or, more generally, for operators which admit a generalized Kato decomposition. For these operators the property of having a closed quasi-nilpotent part is related to the so-called single valued extension property.

Unbounded operatorDiscrete mathematicsPure mathematicsApproximation propertyApplied MathematicsGeneral MathematicsSpectrum (functional analysis)Finite-rank operatorSpectral theoremOperator theoryOperator normFourier integral operatorMathematicsProceedings of the American Mathematical Society
researchProduct

Generalized Browder’s Theorem and SVEP

2007

A bounded operator \(T \in L(X), X\) a Banach space, is said to verify generalized Browder’s theorem if the set of all spectral points that do not belong to the B-Weyl’s spectrum coincides with the set of all poles of the resolvent of T, while T is said to verify generalized Weyl’s theorem if the set of all spectral points that do not belong to the B-Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues. In this article we characterize the bounded linear operators T satisfying generalized Browder’s theorem, or generalized Weyl’s theorem, by means of localized SVEP, as well as by means of the quasi-nilpotent part H0(λI − T) as λ belongs to certain …

Unbounded operatorDiscrete mathematicsPure mathematicsGeneral MathematicsSpectrum (functional analysis)Banach spaceBounded operatorSettore MAT/05 - Analisi MatematicaBounded functionSVEP Fredholm theory generalized Weyl’s theorem and generalized Browder’s theoremMathematics::Representation TheoryBounded inverse theoremEigenvalues and eigenvectorsResolventMathematicsMediterranean Journal of Mathematics
researchProduct

Bicommutants of reduced unbounded operator algebras

2009

The unbounded bicommutant $(\mathfrak M_{E'})''$ of the {\em reduction} of an O*-algebra $\MM$ via a given projection $E'$ weakly commuting with $\mathfrak M$ is studied, with the aim of finding conditions under which the reduction of a GW*-algebra is a GW*-algebra itself. The obtained results are applied to the problem of the existence of conditional expectations on O*-algebras.

Unbounded operatorDiscrete mathematicsPure mathematicsReduction (recursion theory)Applied MathematicsGeneral MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Conditional expectationProjection (linear algebra)Unbounded operator algebrasSettore MAT/05 - Analisi MatematicaAlgebra over a fieldBicommutantMathematical PhysicsMathematicsBicommutant
researchProduct

Induced and reduced unbounded operator algebras

2012

The induction and reduction precesses of an O*-vector space \({{\mathfrak M}}\) obtained by means of a projection taken, respectively, in \({{\mathfrak M}}\) itself or in its weak bounded commutant \({{\mathfrak M}^\prime_{\rm w}}\) are studied. In the case where \({{\mathfrak M}}\) is a partial GW*-algebra, sufficient conditions are given for the induced and the reduced spaces to be partial GW*-algebras again.

Unbounded operatorDiscrete mathematicsReduction (recursion theory)Applied MathematicsMathematics - Operator AlgebrasFOS: Physical sciencesMathematical Physics (math-ph)Space (mathematics)Centralizer and normalizerPrime (order theory)CombinatoricsProjection (relational algebra)Bounded functionInduced representationreduced representation: unbounded operator algebrasFOS: MathematicsOperator Algebras (math.OA)Mathematics::Representation TheoryMathematical PhysicsMathematics
researchProduct