Search results for "Breeding blanket"

showing 10 items of 43 documents

WCLL breeding blanket design and integration for DEMO 2015: status and perspectives

2017

Abstract Water-cooled lithium-lead breeding blanket is considered a candidate option for European DEMO nuclear fusion reactor. ENEA and the linked third parties have proposed and are developing a multi-module blanket segment concept based on DEMO 2015 specifications. The layout of the module is based on horizontal (i.e. radial-toroidal) water-cooling tubes in the breeding zone, and on lithium lead flowing in radial-poloidal direction. This design choice is driven by the rationale to have a modular design, where a basic geometry is repeated along the poloidal direction. The modules are connected with a back supporting structure, designed to withstand thermal and mechanical loads due to norma…

Neutron transportComputer scienceBlanket7. Clean energy01 natural sciencesbreeding blanket; CFD; DEMO; WCLL010305 fluids & plasmaslaw.inventionlaw0103 physical sciencesDesign choiceGeneral Materials Science010306 general physicsWCLL Breeding blanket DEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringWCLL Breeding blanket DEMObusiness.industryMechanical EngineeringLead systemPressurized water reactorFusion powerModular designNuclear Energy and EngineeringSystems engineeringbusinessTransport systemFusion Engineering and Design
researchProduct

Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model

2021

Abstract The development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO) is a key issue within the EUROfusion roadmap. The DEMO reactor is designed to produce a fusion power of about 2 GW and generate a substantial amount of electricity, relying on a closed tritium fuel cycle: it implies that the breeding blanket (BB) shall guarantee a suitable tritium production to enable a continuous operation without any external supply. The Water-Cooled Lithium Lead (WCLL) concept is a candidate for the DEMO BB: it uses liquid Lithium Lead as breeder and neutron multiplier and water in PWR condition as coolant. The neutronics analyses carried out in the past have been performed …

Neutron transportTokamakBreeding blanket;Computer scienceNuclear engineeringBlanket01 natural sciences010305 fluids & plasmaslaw.inventionBreeder (animal)Conceptual designlaw0103 physical sciencesMCNPNeutronicsGeneral Materials ScienceNeutron010306 general physicsDEMOCivil and Structural EngineeringMechanical EngineeringFusion powerWCLLCoolantNuclear Energy and EngineeringNuclear analysisBreeding blanketFusion Engineering and Design
researchProduct

Thermo-mechanical testing of Li-ceramic for the helium cooled pebble bed (HCPB) breeding blanket

2004

The helium cooled pebble bed (HCPB) Test blanket module (TBM) for the DEMO Reactor foresees the utilization of lithiate ceramics as breeder in form of pebble beds. The pebbles are organized in several layers alternatively stacked among couples of cooling plates (CP). ENEA has launched an experimental programme for the out-of-pile thermo-mechanical testing of mock-ups simulating a portion of the HCPB-TBM. The programme foresees the fabrication and testing of different mock-ups, to be tested in the HE-FUS3 facility at ENEA Brasimone. The paper describes the HELICHETTA III campaign carried-out in 2003. In particular, the test section layout, the pebble filling procedure, the experimental set-u…

Nuclear and High Energy PhysicsMaterials scienceNuclear engineeringFUSION REACTOR BREEDING BLANKET PEBBLE BEDSchemistry.chemical_elementBlanketNuclear physicsBreeder (animal)Nuclear Energy and Engineeringchemistryvisual_artvisual_art.visual_art_mediumGeneral Materials ScienceCeramicPebbleHeliumThermo mechanicalSettore ING-IND/19 - Impianti Nucleari
researchProduct

Overview of the DEMO staged design approach in Europe

2019

This paper describes the status of the pre-conceptual design activities in Europe to advance the technical basis of the design of a DEMOnstration Fusion Power Plant (DEMO) to come in operation around the middle of this century with the main aims of demonstrating the production of few hundred MWs of net electricity, the feasibility of operation with a closed-tritium fuel cycle, and maintenance systems capable of achieving adequate plant availability. This is expected to benefit as much as possible from the ITER experience, in terms of design, licensing, and construction. Emphasis is on an integrated design approach, based on system engineering, which provides a clear path for urgent R&D …

Nuclear and High Energy Physicsbreeding blanket; DEMO; design integration; divertor; fusion reactor; systems codeDesign activitiesFuel cyclemedia_common.quotation_subjectThermal power stationDesign integration7. Clean energy01 natural sciences010305 fluids & plasmasdesign integration0103 physical sciencesdivertorProduction (economics)010306 general physicsDEMOmedia_commonbreeding blanketIntegrated designbusiness.industryCondensed Matter PhysicsInterdependencesystems codeSystems engineeringfusion reactorElectricityddc:620businessNuclear Fusion
researchProduct

Preliminary design of the top cap of DEMO Water-Cooled Lithium Lead breeding blanket segments

2020

Abstract Within the framework of EUROfusion R&D activity, a research campaign has been carried out at the University of Palermo, in close cooperation with ENEA labs, in order to preliminary design the top cap foreseen for the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket segments. Due to the high heat and pressure loads acting on such component, its design results particularly demanding and a specific multi-physics approach is needed, covering several aspects from thermal-hydraulics to structural assessments. Preliminary detailed CAD model of the cap integrated into the upper region of the WCLL breeding blanket outboard central segment has been set-up, equipped with proper cooling …

Nuclear engineeringchemistry.chemical_elementBlanket7. Clean energy01 natural sciencesTop cap010305 fluids & plasmasLead (geology)Component (UML)0103 physical sciencesGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringElectronic circuitStructural materialMechanical EngineeringWater cooledCapWCLLNuclear Energy and EngineeringchemistryEnvironmental scienceMulti-physicsLithiumBreeding blanketFusion Engineering and Design
researchProduct

Multiphysics Optimization for First Wall Design Enhancement in Water-Cooled Breeding Blankets

2021

Abstract The commercial feasibility of the first fusion power plant generation adopting D-T plasma is strongly dependent upon the self-sustainability in terms of tritium fuelling. Within such a kind of reactor, the component selected to house the tritium breeding reactions is the breeding blanket, which is further assigned to heat power removal and radiation shielding functions. As a consequence of both its role and position, the breeding blanket is heavily exposed to both surface and volumetric heat loads and, hence, its design requires a typical multiphysics approach, from the neutronics to the thermo-mechanics. During last years, a great deal of effort has been put in the optimization of…

OptimizationNuclear and High Energy PhysicsNeutron transportBreeding blanket Complex method Multiphysics Neutronics Optimization ThermomechanicsComputer scienceMaterials Science (miscellaneous)Water cooledMultiphysicsNuclear engineeringMultiphysicsTK9001-9401Structural integrityMaximizationBlanketFusion powerComplex methodThermomechanicsNuclear Energy and EngineeringComponent (UML)NeutronicsNuclear engineering. Atomic powerBreeding blanketSettore ING-IND/19 - Impianti Nucleari
researchProduct

Production and transport modelling of Po-210 in DEMO reactor

2022

Abstract One of the generic designs of the nuclear fusion DEMO reactor proposed by the EUROfusion consortium foresees the development of a tritium breeding blanket (BB) relying on the use of the liquid-metal PbLi eutectic alloy as both neutron multiplier and tritium breeder, namely the water-cooled lithium lead (WCLL) BB, whose strengths and weaknesses are well known. This paper focuses the attention on one of the possible disadvantages of such a technology: the production of the highly radiotoxic radionuclide 210Po, which could become a safety issue to be accounted for. The 210Po concentration within the PbLi circuit has been assessed by solving a modified version of Bateman’s equations to…

Po-210Nuclear and High Energy Physicsfluid-dynamicsneutronicsBreeding blanketCondensed Matter PhysicsDEMOSettore ING-IND/19 - Impianti NucleariNuclear Fusion
researchProduct

Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

2016

Abstract The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with…

Steady stateMathematical modelDEMO reactor WCLL breeding blanket Breeder zone cooling tubesMechanical EngineeringNuclear engineeringchemistry.chemical_elementBlanket7. Clean energy01 natural sciencesFinite element method010305 fluids & plasmasBreeder (animal)Nuclear Energy and Engineeringchemistry0103 physical sciencesThermalEnvironmental scienceGeneral Materials ScienceLithium010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statisticsFusion Engineering and Design
researchProduct

Neutronic and photonic analysis of the water-cooled Pb17Li test blanket module for ITER-FEAT

2002

Abstract Within the European Fusion Technology Program, the Water-Cooled Lithium Lead (WCLL) DEMO breeding blanket line was selected in 1995 as one of the two EU lines to be developed in the next decade, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. This specific goal has been maintained also in ITER-FEAT program even if the general design parameters of the TBMs have reported some changes. This paper is focused on the investigation of the WCLL-TBM nuclear response in ITER-FEAT through detailed 3D-Monte Carlo neutronic and photonic analyses. A 3D heterogeneous model of the most recent design of the WCLL-TBM has been set-up simulating reali…

Structural materialMaterials sciencebusiness.industryNeutronicMechanical EngineeringWater cooledPower depositionNuclear engineeringPhotonicchemistry.chemical_elementFusion powerBlanketMonte Carlo methodNuclear physicsNuclear Energy and EngineeringchemistryNeutron sourceGeneral Materials ScienceLithiumBreeding blanketPhotonicsbusinessSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Systems Engineering approach in support to the breeding blanket design

2019

Abstract Nowadays the Systems Engineering (SE) methodology is applied in several fields of engineering and it represents a powerful interdisciplinary means to enable the realisation of complex systems taking into account the customer and Stakeholder´s needs. Also in the fusion community, this theme is becoming increasingly pressing and the implementation of the SE approach, from the early stage of design, is now a must. Indeed, within the framework of EUROfusion activities, SE method has been selected for capturing the system and interface requirements and for their management and verification with particular focus to the Breeding Blanket (BB) System of the European Demonstration Fusion Pow…

TechnologyInterface (Java)Computer scienceSystems EngineeringBalance of plantComplex systemBlanket01 natural sciences7. Clean energy010305 fluids & plasmasSystems Modeling Language0103 physical sciencesGeneral Materials Science010306 general physicsCivil and Structural EngineeringFocus (computing)Functional architectureMechanical EngineeringRealisationInterfaceDesign phaseRequirementNuclear Energy and EngineeringSystems engineeringBreeding blanketddc:600
researchProduct