Search results for "Bromobenzene"

showing 10 items of 21 documents

Screening of halogenated aromatic compounds in some raw material lots for an aluminium recycling plant

2004

Four samples of scrap raw materials for an aluminium recycling plant were screened for the occurrence of persistent halogenated aromatic compounds. The samples contained waste from handling of electric and electronic plastics, filter dust from electronic crusher, cyclone dust from electronic crusher and light fluff from car shredder. In our screening analyses, brominated flame retardants were observed in all samples. Polybrominated diphenyl ethers (PBDE) were identified in all samples in amounts of 245–67450 ng/g. The major PBDE congeners found were decabromo- and pentabromodiphenyl ethers. 1,1-bis(2,4,6-tribromophenoxy)ethane, hexabromobenzene, ethyl-pentabromobenzene, tetrabromobisphenol-…

lcsh:GE1-350Conservation of Natural ResourcesWaste managementPhenyl EthersPolybrominated BiphenylsIndustrial WasteAluminium recyclingScrapRaw materialHydrocarbons AromaticHydrocarbons Brominatedchemistry.chemical_compoundPolybrominated diphenyl etherschemistryEnvironmental chemistryHexabromobenzeneHalogenated Diphenyl EthersSoil PollutantsPentabromotolueneWater Pollutants Chemicallcsh:Environmental sciencesAluminumEnvironmental MonitoringFlame RetardantsGeneral Environmental ScienceEnvironment International
researchProduct

Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

2014

Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the red…

Chromatography GasMagnetic Resonance SpectroscopyStereochemistrychemistry.chemical_elementNanoparticleLigandsCatalysisCatalysisNanomaterialsPulicariaInorganic ChemistrySuzuki reactionMicroscopy Electron TransmissionX-Ray DiffractionSpectroscopy Fourier Transform InfraredMoleculeAqueous solutionChemistryPlant ExtractsX-RaysTemperatureGreen Chemistry TechnologyTransmission electron microscopyNanoparticlesSpectrophotometry UltravioletPalladiumNuclear chemistryPalladiumBromobenzenesDalton transactions (Cambridge, England : 2003)
researchProduct

Initiierte autoxydation von isotaktischem und ataktischem polybuten-1 in lösung

1968

Isotaktisches und ataktisches Polybuten-1 (PB) wurden bei 70,6°C in brombenzolischer Losung mit Azoisobuttersauredinitril als Initiator mit Sauerstoff oxydiert. Die oxydierten Proben wurden isoliert, und der Gehalt an Hydroperoxidgruppen wurde mit Hilfe von Triphenylphosphin bestimint. Cyclische Peroxide, die bei oxydiertem isotaktischem Polybuten 1 moglich sind, konnen nicht mit Triphenylphosphin bestimmt werden, da sie zerfallen, bevor sie mit dem Phosphin reagieren. Dies wurde an niedermolekularen Modellverbindungen uberpruft. Unter den Reaktionsbedingungen war die kinetische Kettenlange so klein (1 bis 2), das deutliche Unterschiede der Oxydation von isotaktischem und ataktischem Polybu…

Reaction conditionsKinetic chain lengthchemistry.chemical_compoundChemistryBromobenzeneTacticityPolymer chemistryAzobisisobutyronitrileTriphenylphosphinePeroxidePhosphineDie Makromolekulare Chemie
researchProduct

Emerging brominated flame retardants and dechlorane-related compounds in European eels (Anguilla anguilla) from Latvian lakes

2017

Abstract Fifteen halogenated flame retardants (HFRs) including seven emerging brominated flame retardants (EBFRs) and eight dechlorane-related compounds (DRCs) were analyzed in eels (Anguilla anguilla) sampled from five Latvian lakes. Out of the seven EBFRs, hexabromocyclododecane (HBCD) and decabromodiphenyl ethane (DBDPE) were found in eels in quantifiable concentrations, up to 6.58 and 33.0 ng g−1 lipid weight (l.w.), respectively. The mean total concentration of DRCs (∑DRC) in the samples was 0.62 ng g−1 l.w. and the geographical distribution of DRC contamination was nearly uniform among the selected lakes. Dechlorane 602 (Dec 602) was the predominant component, whereas the composition …

AsiaEnvironmental EngineeringHalogenation010504 meteorology & atmospheric sciencesHealth Toxicology and Mutagenesis010501 environmental sciencesAquatic biota01 natural scienceschemistry.chemical_compoundHalogenated Diphenyl EthersHydrocarbons ChlorinatedAnimalsEnvironmental ChemistryPolycyclic CompoundsFlame Retardants0105 earth and related environmental sciencesHexabromocyclododecanePublic Health Environmental and Occupational HealthGeneral MedicineGeneral ChemistryContaminationAnguillaLatviaPollutionHydrocarbons BrominatedEuropeLakesDecabromodiphenyl ethanechemistryAquatic environmentEnvironmental chemistryComposition (visual arts)Water Pollutants ChemicalBromobenzenesEnvironmental MonitoringChemosphere
researchProduct

Effect of polybrominated biphenyls on bromobenzene lethality in mice.

1977

Polybrominated biphenyls (PBBs) are inducers of hepatic microsomal cytochrome P450 and P1 450 in rats and mice. The purpose of this study was to determine, in mice, the effect of PBBs on the lethality of the hepatotoxin bromobenzene. Female NMRI mice were administered a single ip injection of 150 mg/kg PBBs and other mice received phenobarbital (PB), 100 mg/kg daily for 3 days, or 3‐methylcholanthrene (MC), 20 mg/kg daily for 3 days. At 24 hr after PB or MC and 24, 48, and 96 hr after PBBs animals received 3,150 mg/kg bromobenzene ip (LD85) and the time to death was recorded. Both PB and MC enhanced bromobenzene lethality and decreased the median time to death (LT50) from 23 hr in controls …

Time FactorsStereochemistryPolybrominated BiphenylsPharmacologyToxicologyLethal Dose 50chemistry.chemical_compoundMicemedicineAnimalsDrug InteractionsbiologyBiphenyl CompoundsHepatotoxinCytochrome P450PollutionGlutathionechemistryLiverBromobenzeneNmri micePhenobarbitalMicrosomebiology.proteinLethalityPhenobarbitalPolybrominated BiphenylsFemalemedicine.drugBromobenzenesMethylcholanthreneJournal of toxicology and environmental health
researchProduct

Properties and interactions – melting point of tri­bromo­benzene isomers

2021

The melting points of tri­bromo­benzene isomers are correlated with the number, nature and distribution of intermolecular interactions in their structures.

chemistry.chemical_classificationHalogen bondtribromobenzene isomersChemistryIntermolecular forcemelting pointMetals and AlloysClose-packing of equal spheresResearch PapersAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCrystalmolecular symmetryCrystallographynoncovalent interactionsMaterials ChemistryMelting pointMolecular symmetrystructure-property relationshipNon-covalent interactionsMoleculehalogen bondActa Crystallographica Section B-Structural Science Crystal Engineering and Materials
researchProduct

CCDC 2041523: Experimental Crystal Structure Determination

2021

Related Article: M. Bujak, M. Podsiadło, A. Katrusiak|2021|Acta Crystallogr.,Sect.B:Struct.Sci.,Cryst.Eng. and Mat.|77|632|doi:10.1107/S2052520621006399

Space GroupCrystallographyCrystal System123-tribromobenzeneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2041521: Experimental Crystal Structure Determination

2021

Related Article: M. Bujak, M. Podsiadło, A. Katrusiak|2021|Acta Crystallogr.,Sect.B:Struct.Sci.,Cryst.Eng. and Mat.|77|632|doi:10.1107/S2052520621006399

Space GroupCrystallographyCrystal System123-tribromobenzeneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2041517: Experimental Crystal Structure Determination

2021

Related Article: M. Bujak, M. Podsiadło, A. Katrusiak|2021|Acta Crystallogr.,Sect.B:Struct.Sci.,Cryst.Eng. and Mat.|77|632|doi:10.1107/S2052520621006399

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters135-tribromobenzeneExperimental 3D Coordinates
researchProduct

CCDC 2041515: Experimental Crystal Structure Determination

2021

Related Article: M. Bujak, M. Podsiadło, A. Katrusiak|2021|Acta Crystallogr.,Sect.B:Struct.Sci.,Cryst.Eng. and Mat.|77|632|doi:10.1107/S2052520621006399

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters135-tribromobenzeneExperimental 3D Coordinates
researchProduct