Search results for "Buckling"
showing 10 items of 104 documents
Theoretical elastoplastic buckling of stringer stiffened cylindrical shells
1985
Abstract A linear analysis method is offered to predict the theoretical elastoplastic buckling of stringer stiffened cylindrical shells subjected to longitudinal loading. Welding residual stresses are taken into account in the calculation, but effects of geometrical imperfections and pre-buckling displacements are ignored. The examples analysed show a good correlation between the analytical results and those obtained experimentally with stocky models of moderate geometrical imperfections.
Electronic properties of carbon nanotubes under torsion
2012
A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…
Simple equations for strength and deformability verification of tubular steel wind turbine towers
2021
Abstract Simple analytical expressions for a preliminary design of tubular steel wind turbine towers under flexure and shear are proposed. Expressions derived included local buckling effects, shear to moment interaction, ovalization of cross-section and inelastic rotation of foundation. A finite-element analysis with ABAQUS program was also conducted for examination of the ovalization effects and for the whole response of steel tube in flexure. Numerical and analytical results were compared with the experimental results of recent studies available in the literature, showing good agreement. The range of variable investigated refers to medium and large size steel wind tower with cylindrical s…
Compressive behavior of short fibrous reinforced concrete members with square cross-section
2011
In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and dam…
Nonlinear Structural Mechanics Based Modeling of Carbon Nanotube Deformation
2003
A nonlinear structural mechanics based approach for modeling the structure and the deformation of single-wall and multiwall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell finite elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The effects of van der Waals forces are simulated with special interaction elements. This new CNT modeling approach is verified by comparison with molecular dynamics simulations and high-resolution micrographs available in the literature. The mechanics of wrinkling of multiwall CNTs are studied, demonstrating the role of the …
Limits of stability in supported graphene nanoribbons subject to bending
2016
Graphene nanoribbons are prone to in-plane bending even when supported on flat substrates. However, the amount of bending that ribbons can stably withstand remains poorly known. Here, by using molecular dynamics simulations, we study the stability limits of 0.5-1.9 nm wide armchair and zigzag graphene nanoribbons subject to bending. We observe that the limits for maximum stable curvatures are below ~10 deg/nm, in case the bending is externally forced and the limit is caused by buckling instability. Furthermore, it turns out that the limits for maximum stable curvatures are also below ~10 deg/nm, in case the bending is not forced and the limit arises only from the corrugated potential energy…
Structural Behavior of Telescopic Steel Pipe for a Full-Scale 60 kW Wind Turbine Tower
2020
A simple analytical model, including local effects due to buckling and shear to moment interaction, was developed to pre-dict the load-carrying capacity of CHS tubes under flexure and shear. A finite-element analysis with ABAQUS Code was also conducted for validation of the proposed model. By properly modeling the imperfection effects due to the ovalization of steel tube, a good correlation of the structural response and failure mode was also achieved, and a good correlation with the analytical model was also achieved. Numerical and analytical results were compared with experimental results recently obtained by the author with good agreement. Experimental tests refer to full-scale static te…
Bifurcations of a simplified buckling problem and the effect of discretizations
1991
Analysis and design of elastic plastic structures subjected to dynamic loads
In the last decades, the concept of “optimization” has reached considerable value in many different fields of scientific research and, in particular, it has assumed great importance in the field of structural mechanics. The present study describes and shows the scientific path followed in the three years of doctoral studies. The state of the art concerning the optimization of elastic plastic structures subjected to quasi-static loads was already well established at the beginning of the Ph.D. course. Actually, it was already faced the study of structures subjected to quasi-static cyclic loads able to ensure different structural behaviors in relation to different intensity levels of the appli…
Discrete variable design of frames subjected to seismic actions accounting for element slenderness
2015
An optimal design problem formulation of elastic plastic frames under different combinations of fixed and seismic loads is presented. The optimal structure must behave elastically for the fixed loads, shakedown for serviceability conditions and prevent instantaneous collapse for fixed and high seismic loads. P-Delta effects and element buckling are considered. An appropriate modal technique is utilized. The design variables can have components in a continuous field or, alternatively, in chosen discrete sets or, yet, both kind of variables can be present. The design problem is formulated on the ground of a statical approach. The applications are related to steel frames.