Search results for "C23"
showing 10 items of 39 documents
Conformal equivalence of visual metrics in pseudoconvex domains
2017
We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.
Failure of the local-to-global property for CD(K,N) spaces
2016
Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
2018
AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…
Universal infinitesimal Hilbertianity of sub-Riemannian manifolds
2019
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces
2014
We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier's theorem of existence of optimal maps.
Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm
2011
We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.
Metric equivalences of Heintze groups and applications to classifications in low dimension
2021
We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.
Failure of topological rigidity results for the measure contraction property
2014
We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.
Equivalent definitions of very strict $CD(K,N)$ -spaces
2023
We show the equivalence of the definitions of very strict $CD(K,N)$ -condition defined, on one hand, using (only) the entropy functionals, and on the other, the full displacement convexity class $\mathcal{DC}_N$. In particular, we show that assuming the convexity inequalities for the critical exponent implies it for all the greater exponents. We also establish the existence of optimal transport maps in very strict $CD(K,N)$ -spaces with finite $N$.
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
2020
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.