6533b7d3fe1ef96bd12609c1

RESEARCH PRODUCT

Infinitesimal Hilbertianity of Weighted Riemannian Manifolds

Danka LučićEnrico Pasqualetto

subject

Mathematics - Differential GeometryMathematics::Functional AnalysisPure mathematicsGeneral MathematicsInfinitesimal010102 general mathematicsRiemannian manifold01 natural sciencesSobolev spacedifferentiaaligeometriasymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesFOS: MathematicssymbolsMathematics::Metric Geometry53C23 46E35 58B20010307 mathematical physicsFinsler manifoldMathematics::Differential Geometry0101 mathematicsmonistotCarnot cyclefunktionaalianalyysiMathematics

description

AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the same approach, we also prove that all weighted (sub-Riemannian) Carnot groups are infinitesimally Hilbertian.

http://urn.fi/URN:NBN:fi:jyu-202102081480