0000000000052842
AUTHOR
Danka Lučić
Universal infinitesimal Hilbertianity of sub-Riemannian manifolds
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.
A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space
We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.
Sharp estimate on the inner distance in planar domains
We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painlev\'e length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painlev\'e length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.
Dimension estimates for the boundary of planar Sobolev extension domains
We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev $W^{1,p}$-extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is shown by examples.
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…
Characterisation of upper gradients on the weighted Euclidean space and applications
In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.
The metric-valued Lebesgue differentiation theorem in measure spaces and its applications
We prove a version of the Lebesgue Differentiation Theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon-Nikod\'{y}m property.