0000000000052842

AUTHOR

Danka Lučić

showing 7 related works from this author

Universal infinitesimal Hilbertianity of sub-Riemannian manifolds

2019

We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.

Mathematics - Differential GeometryMetric Geometry (math.MG)Sobolev spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisRiemannin monistotdifferentiaaligeometriasub-Finsler manifoldMathematics - Metric GeometryDifferential Geometry (math.DG)infinitesimal hilbertianityFOS: MathematicsMathematics::Metric Geometrysub-Riemannian manifoldMathematics::Differential GeometrymonistotfunktionaalianalyysiMathematics::Symplectic Geometry53C23 46E35 53C17 55R25Analysis
researchProduct

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

2020

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral Mathematics010102 general mathematicsAbsolute continuity01 natural sciencesMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaEuclidean distanceSobolev spaceNorm (mathematics)0103 physical sciencesRadon measureFOS: Mathematics010307 mathematical physics0101 mathematicsfunktionaalianalyysi53C23 46E35 26B05MathematicsComptes Rendus. Mathématique
researchProduct

Sharp estimate on the inner distance in planar domains

2020

We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painlev\'e length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painlev\'e length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.

Pure mathematicsMathematics - Complex VariablesGeneral MathematicsBoundary (topology)accessible pointsMetric Geometry (math.MG)31A15Domain (mathematical analysis)inner distancePlanarMathematics - Metric GeometryPrimary 28A75. Secondary 31A15Bounded functionTotally disconnected spaceMetric (mathematics)FOS: Mathematics28A75Hausdorff measureComplex Variables (math.CV)Painlevé lengthMathematics
researchProduct

Dimension estimates for the boundary of planar Sobolev extension domains

2020

We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev $W^{1,p}$-extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is shown by examples.

Applied MathematicsMathematical analysisBoundary (topology)Extension (predicate logic)Physics::Classical PhysicsFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisPlanarDimension (vector space)46E35 28A75Mathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsAnalysisMathematics
researchProduct

Infinitesimal Hilbertianity of Weighted Riemannian Manifolds

2018

AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…

Mathematics - Differential GeometryMathematics::Functional AnalysisPure mathematicsGeneral MathematicsInfinitesimal010102 general mathematicsRiemannian manifold01 natural sciencesSobolev spacedifferentiaaligeometriasymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesFOS: MathematicssymbolsMathematics::Metric Geometry53C23 46E35 58B20010307 mathematical physicsFinsler manifoldMathematics::Differential Geometry0101 mathematicsmonistotCarnot cyclefunktionaalianalyysiMathematics
researchProduct

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

The metric-valued Lebesgue differentiation theorem in measure spaces and its applications

2021

We prove a version of the Lebesgue Differentiation Theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon-Nikod\'{y}m property.

Mathematics - Functional AnalysisMathematics::Functional AnalysisAlgebra and Number Theorymeasurable Banach bundleLebesgue differentiation theoremFOS: MathematicsRadon–Nikodým propertyBanachin avaruudetdisintegration of a measure28A15 28A51 46G15 18F15 46G10 46B22 28A50von Neumann liftingAnalysisFunctional Analysis (math.FA)
researchProduct