Search results for "C25"
showing 10 items of 566 documents
Platelet-Derived GARP Induces Peripheral Regulatory T Cells—Potential Impact on T Cell Suppression in Patients with Melanoma-Associated Thrombocytosis
2020
Platelets have been recently described as an important component of the innate and adaptive immunity through their interaction with immune cells. However, information on the platelet&ndash
Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases
2021
Simple Summary Metastatic disease remains one of the biggest challenges for tumor therapy. The aim of our study was the preclinical evaluation of adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cell efficacy as a possible treatment strategy for various types of bone metastatic cancers. We confirmed that AdCAR NK-92 cells successfully induces tumor cell lysis in bone metastasis cell lines derived from mammary, renal cell and colorectal carcinoma as well as melanoma in a specific and controllable manner, thus, establishing a potent cellular product with universal applicability and quick clinical translation potential for the treatment of solid tumors, including metastases. Abstract…
A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors
2021
Simple Summary Glioblastoma (GBM) is a highly aggressive and almost inevitably lethal brain tumor. Animal models for GBM are crucial to study how the tumor evolves in vivo and to test novel treatment options. Most currently available models are based on the transplantation of human GBM cells into mice with a defective immune system. However, this approach does not allow to study the contribution of immune cells to GBM growth and to test immunotherapies. Transplantation of murine GBM cells overcomes this limitation, however, up to now, only a limited number, which mostly do not mimic important characteristics of human GBM, have been available. Via in vivo passaging, we established a set of m…
Role of Hypoxia and the Adenosine System in Immune Evasion and Prognosis of Patients with Brain Metastases of Melanoma: A Multiplex Whole Slide Immun…
2020
Simple Summary The introduction of immune-checkpoint inhibitors improved the therapeutic landscape for patients with advanced malignant melanoma. However, many patients, including patients with melanoma brain metastases, do not derive benefit from immune-checkpoint blockade. Hence, biomarkers are needed to identify potential mechanisms of resistance and optimize patient selection. This study aimed to explore the role of hypoxia-mediated immunosuppression within the tumor microenvironment of patients with metastatic melanoma using multiplex immunofluorescence. We analyzed the prognostic relevance of the hypoxia surrogate marker GLUT-1, the adenosine-synthesizing ectoenzymes CD73/CD39, and th…
Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review
2021
Simple Summary Pancreatic cancer is a digestive tumor that is most difficult to treat and carries one of the worst prognoses. The anatomical location of the pancreas makes it very difficult to obtain enough tumor material to establish a molecular diagnosis, so knowing the biology of this tumor and implementing new targeted-therapies is still a pending issue. The use of liquid biopsy, a blood sample test to detect circulating-tumor DNA fragments (ctDNA), is key to overcoming this difficulty and improving the evolution of this tumor. Liquid biopsies are equally representative of the tissue from which they come and allow relevant molecular and diagnostic information to be obtained in a faster …
Personalized Medicine: Recent Progress in Cancer Therapy
2020
Translational research has revolutionized how we develop new treatments for cancer patients. The change from an organ-centric concept guiding treatment choice towards deep molecular analysis, driving a personalized approach, is one of the most important advances of modern oncology. Several tools such as next generation sequencing and RNA sequencing have greatly improved the capacity to detect predictive and prognostic molecular alterations. Detection of gene mutations, amplifications, and fusions has therefore altered the history of several diseases in both a localized and metastatic setting. This shift in perspective, in which attention is focused on the specific molecular alterations of t…
Carbon Nanodots for On Demand Chemophotothermal Therapy Combination to Elicit Necroptosis: Overcoming Apoptosis Resistance in Breast Cancer Cell Lines
2020
Background: Engineered luminescent carbon nanodots (CDs) are appealing nanomaterials for cancer image-guided photothermal therapy combining near infrared (NIR)&ndash
Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy
2019
International audience; One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation,…
Repurposing of Drugs Targeting YAP-TEAD Functions
2018
Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway’s terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be rele…
Functional characterization of circulating tumor cells (CTCs) from metastatic ER+/HER2− breast cancer reveals dependence on HER2 and FOXM1 for endocr…
2021
Simple Summary Acquired endocrine resistance and late recurrence in patients with ER+/HER2− breast cancer are complex and not fully understood. Here, we evaluated mechanisms of acquired resistance in circulating tumor cells (CTCs) from an ER+/HER2− breast cancer patient who initially responded but later progressed under endocrine treatment. We found a switch from ERα-dependent to HER2-dependent and ERα-independent expression of FOXM1, which may enable disseminated ER+/HER2− cells to re-initiate tumor cell growth and metastasis formation in the presence of endocrine treatment. We found that NFkB signaling sustains HER2 and FOXM1 expression in CTCs in the presence of ERα inhibitors suggesting…