Search results for "C51"

showing 10 items of 13 documents

Forecasting Financial Crises and Contagion in Asia using Dynamic Factor Analysis

2009

Abstract In this paper we use principal components analysis to obtain vulnerability indicators able to predict financial turmoil. Probit modelling through principal components and also stochastic simulation of a Dynamic Factor model are used to produce the corresponding probability forecasts regarding the currency crisis events affecting a number of East Asian countries during the 1997–1998 period. The principal components model improves upon a number of competing models, in terms of out-of-sample forecasting performance.

Economics and EconometricsFinancial contagionforecasting; dynamic factor; currency crisesFinancial contagionFinancial economicsVulnerabilityforecastingProbitFinancial Contagion Dynamic Factor Model Stochastic SimulationFinancial Contagion Dynamic Factor ModelStochastic simulationEconomicsEast AsiaFinancebusiness.industryjel:C51jel:C32Dynamic Factor modelCurrency crisisjel:F34currency crisesDynamic factorPrincipal component analysisbusinessFinancedynamic factor
researchProduct

The European Regional Convergence Process, 1980-1995: Do Spatial Regimes and Spatial Dependence Matter?

2002

International audience; The authors show that spatial dependence and spatial heterogeneity matter in the estimation of the ß-convergence process among 138 European regions over the 1980 to 1995 period. Using spatial econometrics tools, the authors detect both spatial dependence and spatial heterogeneity in the form of structural instability across spatial convergence clubs. The estimation of the appropriate spatial regimes spatial error model shows that the convergence process is different across regimes. The authors also estimate a strongly significant spatial spillover effect: the average growth rate of per capita GDP of a given region is positively affected by the average growth rate of …

AERES A Economie Gestion - CoNRS37-R2 - EconLitspatial dependence0211 other engineering and technologies02 engineering and technologyjel:C21Gross domestic productconvergence club convergence spatial econometrics European regions spatial regimes spatial autocorrelation050602 political science & public administrationEconometricsEconomics[ SHS.ECO ] Humanities and Social Sciences/Economies and financesGrowth rateSpatial dependence[SHS.ECO] Humanities and Social Sciences/Economics and FinanceSpatial analysisComputingMilieux_MISCELLANEOUSGeneral Environmental ScienceConvergence clubsconvergence05 social sciencesjel:C51General Social Sciences021107 urban & regional planningConvergence (economics)[SHS.ECO]Humanities and Social Sciences/Economics and Financespatial regimes0506 political scienceSpatial heterogeneityspatial econometricsSpatial econometricsjel:R11geographic spilloversjel:R15
researchProduct

Hétérogénéité spatiale : principes et méthodes

2004

Spatial Heterogeneity : Principles and Methods This article has a dual purpose . First , it describes the main econometric specifications which can be used to represent spatial heterogeneity , reflected in an instability of parameters in space and / or a heteroscedasticity of error terms . Only the specifications valid in cross-section are examined . Second , it explains the links between spatial heterogeneity and autocorrelation , the other major feature of localised data , defined by the absence of independence between geographical observations . In particular , we look at the extent to which traditional tests of heteroscedasticity or instability need to be amended to take account of spat…

spatial econometrics ; spatial heterogeneity ; structural instability ; heteroscedasticity ; JEL Classification C51 - C52 - R15hétérogénéité spatiale ; économétrie spatiale ; Classification JEL C51 - C52 - R15 ; hétéroscédasticité ; instabilité structurelleGeographyBusiness and International ManagementGeneral Economics Econometrics and FinanceHumanitiesÉconomie & prévision
researchProduct

Faktoru modeļu priekšrocības ekonomiskās aktivitātes īstermiņa prognozēšanā

2014

Promocijas darba anotācija Pēdējā desmitgadē Latvijas tautsaimniecības attīstība bijusi īpaši svārstīga, kas sarežģīja ekonomiskās politikas lēmumu pieņemšanu ekonomiskās situācijas stabilizēšanai. Lai atvieglotu lēmumu pieņemšanu, ekonomisko aktivitāti īstermiņā var prognozēt ar ekonometriskiem modeļiem. Promocijas darba mērķis ir novērtēt faktoru modeļu priekšrocības ekonomiskās aktivitātes prognozēšanas kontekstā un noteikt Latvijas gadījumā nepieciešamo instrumentu un metožu klāstu īstermiņa prognozēšanai. Promocijas darbā tiek sniegtas atbildes uz faktoru modeļu lietošanas problēmjautājumiem īstermiņa prognozēšanā, kā arī novērtēti daži faktoru modeļu lietošanas aspekti. Faktoru modeļu…

Īstermiņa prognozēšanadezagregētā informācijafactor modelsshort-term forecastingdisaggregated informationreālā laika novērtējumsEkonomikareal-time estimationC51 C53 C32 [JEL klasifikācija]jel:C51 C53 C32Ekonometrijafaktoru modeļi
researchProduct

Model Based Monte Carlo Pricing of Energy and Temperature Quanto Options

2010

Weather derivatives have become very popular tools in weather risk management in recent years. One of the elements supporting their diffusion has been the increase in volatility observed on many energy markets. Among the several available contracts, Quanto options are now becoming very popular for a simple reason: they take into account the strong correlation between energy consumption and certain weather conditions, so enabling price and weather risk to be controlled at the same time. These products are more efficient and, in many cases, significantly cheaper than simpler plain vanilla options. Unfortunately, the specific features of energy and weather time series do not enable the use of …

Economics and EconometricsComputer scienceMonte Carlo methodTemperature levelBivariate analysisEnergy priceDynamic modelMicroeconomicsEconomicsEconometricsweather derivatives Quanto options pricing derivative pricing model simulation and forecast.Time seriesQuanto options; Temperature level; Energy price; Dynamic modelMonte Carlo methods for option pricingjel:C53Quanto optionsjel:C51Energy consumptionVariance (accounting)jel:C32Quantojel:G13weather derivatives; Quanto options pricing; derivative pricing; model simulation; forecastjel:L94jel:G17General Energyjel:Q54Binomial options pricing modelVolatility (finance)Futures contract
researchProduct

Weak versus strong dominance of shrinkage estimators

2021

We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.

Economics and EconometricsClass (set theory)Trace (linear algebra)James–SteinEconomics Econometrics and Finance (miscellaneous)James–Stein estimatorContrast (statistics)EstimatorSettore SECS-P/05 - EconometriaMultivariate normal distributionJames-SteinVariance (accounting)DevelopmentC51Dominance (ethology)C13Applied mathematicsBusiness and International ManagementShrinkageEigenvalues and eigenvectorsDominanceMathematics
researchProduct

Spain in the euro: a general equilibrium analysis

2010

Bayesian dynamic stochastic general equilibrium (DSGE) models combine microeconomic behavioural foundations with a full-system Bayesian likelihood estimation approach using key macro-economic variables. Because of the usefulness of this class ofmodels for addressing questions regarding the impact and consequences of alternative monetary policies they are nowadays widely used for forecasting and policy analysis at central banks and other institutions. In this paper we provide a brief description of the two main aggregate euro area models at the ECB. Both models share a common core but their detailed specification differs reflecting their specific focus and use. The New Area Wide Model (NAWM)…

MacroeconomicsDynamisches GleichgewichtInflationGeneral equilibrium theorycentral banksmedia_common.quotation_subjectmonetary policyWageMonetary economicsDSGE modelsE50Rest (finance)ddc:330EconomicsDynamic stochastic general equilibriumProductivityC5DSGE model monetary union growth and inflation differentials Bayesian inferenceE32Spanienmedia_commonWirtschaftswachstumEurojel:C51jel:C11Inflationjel:E17EurozoneEuropean monetary unionGeneral Economics Econometrics and FinanceB4Public finance
researchProduct

Estimation des effets de proximité dans le processus de convergence régionale : une approche par l'économétrie spatiale sur 92 régions européennes (1…

2002

L'objectif de cet article est d'examiner les conséquences de la dépendance spatiale sur la croissance régionale et le processus de convergence. Sur un échantillon de 92 régions européennes sur la période 1980-1995, nous montrons que le modèle de b-convergence absolue doit être re-spécifié en raison de la présence d'auto-corrélation spatiale. Les méthodes de l'économétrie spatiale nous orientent vers une spécification avec erreurs spatialement auto-corrélées qui nous permet de mettre en évidence un effet de débordement géographique. Nous montrons ainsi que le taux de croissance d'une région est influencé positivement par les taux de croissance des régions contiguës.

convergenceéconométrie spatialeconvergence spatial econometrics spillover effects05 social sciencesspillover effects0211 other engineering and technologiesjel:C51effets de débordement021107 urban & regional planning02 engineering and technologyGeneral Medicine[SHS.ECO]Humanities and Social Sciences/Economics and Financespatial econometrics0502 economics and businessconvergencespatial econometricsspillover effectséconométrie spatialeeffets de débordement[ SHS.ECO ] Humanities and Social Sciences/Economies and finances050207 economicsjel:R11[SHS.ECO] Humanities and Social Sciences/Economics and Financejel:R15Revue d’Économie Régionale & Urbaine
researchProduct

On the Ambiguous Consequences of Omitting Variables

2015

This paper studies what happens when we move from a short regression to a long regression (or vice versa), when the long regression is shorter than the data-generation process. In the special case where the long regression equals the data-generation process, the least-squares estimators have smaller bias (in fact zero bias) but larger variances in the long regression than in the short regression. But if the long regression is also misspecified, the bias may not be smaller. We provide bias and mean squared error comparisons and study the dependence of the differences on the misspecification parameter.

Statistics::Machine LearningStatistics::TheoryC51C52BiasMisspecificationLeast-squares estimatorsddc:330Statistics::MethodologyC13Mean squared errorOmitted variablesStatistics::Computation
researchProduct

Clubs de convergence et effets de débordements géographiques : une analyse spatiale sur données régionales européennes, 1980-1995

2007

Our article offers an econometric model of spatial interactions for the empirical analysis of growth in European regions over the period 1980-1995. The model detects spatial spillover effects and makes it possible to take account of the European economy’s strong polarization. More specifically, by factoring in both spatial autocorrelation and spatial heterogeneity, we characterize the economic polarization pattern in European regions, identify convergence clubs, and model them as spatial regimes. We estimate a two-regime model with spatially autocorrelated errors and show that the convergence process differs between the two regimes. We find a strongly significant spatial spillover effect : …

convergenceclubs de convergence ; économétrie spatiale ; dépendance spatiale ; effets de débordements géographiques ; Classification JEL C21 - C51 - R11 - R15 ; â-convergence05 social sciences0211 other engineering and technologies021107 urban & regional planning02 engineering and technology[SHS.ECO]Humanities and Social Sciences/Economics and Financerégions européennesconvergence clubs ; ß-convergence ; spatial econometrics ; spatial dependence ; spatial spillover effects JEL Classification C21 - C51 - R11 - R150502 economics and business8. Economic growth[ SHS.ECO ] Humanities and Social Sciences/Economies and finances050207 economicsBusiness and International Management[SHS.ECO] Humanities and Social Sciences/Economics and FinanceGeneral Economics Econometrics and FinanceComputingMilieux_MISCELLANEOUSanalyse spatialeAERES B Economie Gestion - CoNRS37-R3 - EconLit - Code JEL : C21 R12
researchProduct