Search results for "CALORIMETER"

showing 7 items of 197 documents

Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory

2021

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Argentina-Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas; in gratitude for their continuing cooperation over land access; Australia-the Australian Research Council; Brazil…

interaction: modelPhysics::Instrumentation and DetectorsAstronomyHadronGeneral Physics and AstronomyUltra-high energy cosmic rays muons properties hadronic models01 natural sciencescosmic ray; particle interaction; astroparticle detectorsAugerHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ironsurface [detector]Observatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]cosmic rayPhysics4. EducationPhysicsSettore FIS/01 - Fisica Sperimentalemeasured [fluctuation]model [interaction]Astrophysics::Instrumentation and Methods for Astrophysicsmodel: hadronicfluctuation: measured3. Good healthAugerobservatoryparticle interactionSciences exactes et naturellesatmosphere [showers]model [particle]airCherenkov counter: waterAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesCosmic raydetector: fluorescenceNuclear physicsastroparticle detectorscosmic raysmuon0103 physical sciencescalorimeterddc:53014. Life underwatercosmic radiation: UHEHigh Energy Physicsdistribution functionelectromagnetic component010306 general physicsAstrophysiquePierre Auger Observatoryfluorescence [detector]Muonshowers: atmospherehep-exdetector: surfacewater [Cherenkov counter]particle: modelSmall deviationsFísicaASTROFÍSICAAir showerExperimental High Energy PhysicsElementary Particles and Fieldshadronic [model]High Energy Physics::Experiment
researchProduct

Analytical models for the pulse shape of a superconductor-ferromagnet tunnel junction thermoelectric microcalorimeter

2022

AbstractThe superconductor-ferromagnet thermoelectric detector (SFTED) is a novel ultrasensitive radiation detector based on the giant thermoelectric effect in superconductor-ferromagnet tunnel junctions. We demonstrate analytical models and solutions in the time domain for a SFTED operated as a microcalorimeter (pulse excitation), in the linear small-signal limit. Based on these solutions, the signal current and temperature pulse response were studied for two different electrical circuit models, providing design conditions for stable and non-oscillatory response.Kindly check and confirm whether the corresponding author is correctly identified.The corresponding author is correct. 

mikroelektroniikkamagneetitCondensed Matter - Superconductivitytime-domainFOS: Physical sciencesanalytical modelApplied Physics (physics.app-ph)Physics - Applied PhysicsthermoelectricCondensed Matter PhysicsAtomic and Molecular Physics and OpticssuprajohteetSuperconductivity (cond-mat.supr-con)ilmaisimetCondensed Matter::SuperconductivitycalorimeterGeneral Materials Sciencekalorimetria
researchProduct

Study of very forward energy and its correlation with particle production at midrapidity in pp and p-Pb collisions at the LHC

2022

Journal of high energy physics 08(8), 86 (2022). doi:10.1007/JHEP08(2022)086

perturbation theory [quantum chromodynamics]p p: scatteringNuclear and High Energy Physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]FOS: Physical scienceshiukkasfysiikkatransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEHeavy Ion Experimentsscattering [p p]Heavy Ion Experiments ; calorimeter: forward spectrometer ; p: fragmentation ; quantum chromo ; dynamics: perturbation theory ; pp: scattering ; p nucleus: scattering ; parton: interaction ; CERN LHC Coll ; PYTHIA ; correlation ; Monte Carlo ; underlying event ; ALICE ; transverse momentum ; rapidity ; experimental results ; 13000 GeV-cms/nucleon ; 8160 GeV-cms/nucleon[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experimentddc:530p: fragmentationquantum chromodynamics: perturbation theoryNuclear Experiment (nucl-ex)parton: interactionNuclear ExperimentNuclear Experimentp nucleus: scatteringMonte Carlointeraction [parton]calorimeter: forward spectrometerunderlying eventscattering [p nucleus]8160 GeV-cms/nucleonfragmentation [p]forward spectrometer [calorimeter]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC Collrapiditycorrelation13000 GeV-cms/nucleonPYTHIAParticle Physics - Experimentexperimental results
researchProduct

Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at √s, √sNN = 5.02 TeV

2021

Jet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at √sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT region, while they underestimate the low…

related to the perturbative component of the fragmentation processthe measured trends are successfully described by all models except for Herwig. For the wide componentHerwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation.Nuclear and High Energy Physicswhile that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow componentHeavy Ion Experimentsand with a Gaussian for lower jT values (called the “narrow component”)hiukkasfysiikkawhile they underestimate the lower jT region. The jT distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT values (called the “wide component”)predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentumJet fragmentation transverse momentum (jT) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at √sNN = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT distributions are compared with a variety of parton-shower models. Herwig and PYTHIA 8 based models describe the data well for the higher jT region
researchProduct

Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of ^{82}Se with CUPID-0.

2019

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

two-neutrinos double-β decay; nuclear matrix elements; scintillating cryogenic calorimetersDouble beta decay exited states nuclear modelnuclear matrix elementshiukkasfysiikkaydinfysiikkatwo-neutrinos double-β decayscintillating cryogenic calorimetersPhysical review letters
researchProduct

The OLYMPUS Experiment

2014

Nuclear instruments &amp; methods in physics research / A 741, 1 - 17 (2014). doi:10.1016/j.nima.2013.12.035

two-photon [exchange]Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronluminosity: monitoringRecoil4-MOMENTUM TRANSFERSNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear ExperimentPhysicsElastic scatteringLuminosity (scattering theory)ELECTROMAGNETIC FORM-FACTORSInstrumentation and Detectors (physics.ins-det)elastic scattering [cross section]positron p: elastic scatteringAntimatterdrift chamberelastic scattering [electron p]target [hydrogen]proportional chamberCROSS-SECTIONNuclear and High Energy PhysicsELECTRON-PROTONDESY DORIS StorFOS: Physical sciencesmonitoring [luminosity]time-of-flight530electron p: elastic scatteringNuclear physicsCross section (physics)RATIO(GEV/C)(2)p: form factor: ratiocalorimeterddc:530cross section: elastic scatteringactivity reporthydrogen: targetexchange: two-photonScatteringPOSITRONSDESYelastic scattering [positron p]magnetic spectrometerELECTROMAGNETIC FORM-FACTORS; PROTON ELASTIC-SCATTERING; 4-MOMENTUM TRANSFERS; ELECTRON-PROTON; CROSS-SECTION; RATIO; (GEV/C)(2); POSITRONSform factor: ratio [p]gas electron multiplierPhysics::Accelerator PhysicsPROTON ELASTIC-SCATTERINGHigh Energy Physics::Experiment
researchProduct

The ALICE experiment at the CERN LHC

2008

Journal of Instrumentation 3(08), S08002 (2008). doi:10.1088/1748-0221/3/08/S08002

visible and IR photonsLiquid detectorshigh energyPhotonPhysics::Instrumentation and DetectorsTransition radiation detectorsTiming detectors01 natural sciencesOverall mechanics designParticle identificationSoftware architecturesParticle identification methodsGaseous detectorscluster findingDetector cooling and thermo-stabilizationDetector groundingParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Special cablesDetector alignment and calibration methodsDetectors and Experimental TechniquesNuclear ExperimentVoltage distributions.Photon detectors for UVInstrumentationMathematical PhysicsQuantum chromodynamicsPhysicsLarge Hadron ColliderSpectrometersPhysicsDetectorcalibration and fitting methodsTransition radiation detectorScintillatorsData processing methodsAnalysis and statistical methodsData reduction methodsParticle physicsCherenkov and transition radiationTime projection chambers610dE/dx detectorsNuclear physicsCalorimetersPattern recognitionGamma detectors0103 physical sciencesddc:610Solid state detectors010306 general physicsMuonInstrumentation for heavy-ion acceleratorsSpectrometerLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsCERN; LHC; ALICE; heavy ion; QGPCherenkov detectorsComputingVoltage distributionsManufacturingscintillation and light emission processesanalysis and statistical methods; calorimeters; cherenkov and transition radiation; cherenkov detectors; computing; data processing methods; data reduction methods; de/dx detectors; detector alignment and calibration methods; detector cooling and thermo-stabilization; detector design and construction technologies and materials; detector grounding; gamma detectors; gaseous detectors; instrumentation for heavy-ion accelerators; instrumentation for particle accelerators and storage rings - high energy; large detector systems for particle and astroparticle physics; liquid detectors; manufacturing; overall mechanics design; particle identification methods; particle tracking detectors; pattern recognition; cluster finding; calibration and fitting methods; photon detectors for uv; visible and ir photons; scintillators; scintillation and light emission processes; simulation methods and programs; software architectures; solid state detectors; special cables; spectrometers; time projection chambers; timing detectors; transition radiation detectors; voltage distributionsInstrumentation for particle accelerators and storage ringsInstrumentation; Mathematical PhysicsHigh Energy Physics::ExperimentSimulation methods and programsDetector design and construction technologies and materials
researchProduct