Search results for "CARBON NANOTUBES"
showing 10 items of 165 documents
Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water.
2019
Due to large drug consumption, pharmaceutically active compounds (PhACs) can be found as water contaminants. The removal of PhACs is a significant issue, as they can easily overtake traditional purification methods. Because of their surface properties, carbon nanomaterials are among the most efficient materials able to adsorb PhACs. However, their limitation is their recovery after use and their possible leakage into the aquatic system. Consequently, new hybrid supramolecular ionic liquid gels (HILGs) have been designed for the adsorption of some antibiotic drugs (ciprofloxacin and nalidixic acid) from water. The chemical&ndash
A supercritical-fluid method for growing carbon nanotubes
2007
Large‐scale generation of multiwalled carbon nanotubes (MCNTs) is efficiently achieved through a supercritical fluid technique employing carbon dioxide as the carbon source. Nanotubes with diameters ranging from 10 to 20 nm and lengths of several tens of micrometers are synthesized (see figure). The supercritical‐fluid‐grown nanotubes also exhibit field‐emission characteristics similar to MCNTs grown by chemical‐vapor deposition.
Trapping cold atoms using surface-grown carbon nanotubes
2008
We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.
Novel method for functionalising and patterning textile composites:Liquid resin print
2016
Abstract The paper reports a novel method of integrating resin into continuous textile reinforcement. The method presents a print of liquid reactive resin into textile preforms. A series of targeted injections forms a patch which upon consolidation and curing transforms into a stiff region continuously spanning through preform thickness. Enhancing the injected resin with conductive phase allows creating a pattern of patches with controlled dimensions and added functionalities. Patterned composites reveal features which are not typical for conventional composites such as fibre bridged interfaces, regular thickness variation, and gradient matrix properties. The presented study explores the ro…
On the trade-off between processability and opto-electronic properties of single wall carbon nanotube derivatives in thin film heterojunctions
2015
A flow functionalization route has been employed to derivatize single wall carbon nanotubes (SWCNTs) by thienylphenyl groups. The SWCNT derivatives in the most soluble fraction have been characterized by thermogravimetric analysis, DLS analysis, DFT calculations, and UV-vis-NIR, microRaman and IR spectroscopies to study the degree of functionalization, the concentration of SWCNTs in solution, the dimension of the aggregates in solutions, the density of defects, and the presence of the thienylphenyl groups. Thin-film heterojunctions made of SWCNT derivatives and poly(3-hexylthiophene) (P3HT) have been prepared by various methods employing the Langmuir–Schaefer technique, spin-coating and the…
Carbon nanotubes-based nanohybrids for multifunctional nanocomposites
2017
In the present work, nano-hybrids based on carbon nanotubes (CNTs) bearing immobilized, either through covalent linkage and physical absorption, commercial anti-oxidant molecules have been formulated and used as nanofillers in Ultra High Molecular Weight Polyethylene (UHMWPE), aiming at preparing multifunctional nanocomposites. The effective immobilization of the anti-oxidant molecules has been probed by spectroscopic and thermogravimetric analyses. The study of the morphology and the rheological behaviour of the nanocomposites show that the immobilization of anti-oxidant molecules onto the CNTs surface is beneficial for the state of the polymer/nanoparticles interfacial region. Additionall…
Straightforward preparation of highly loaded MWCNT-polyamine hybrids and their application in catalysis
2020
Multiwalled carbon nanotubes (MWCNTs) were easily and efficiently functionalised with highly cross-linked polyamines. The radical polymerisation of two bis-vinylimidazolium salts in the presence of pristine MWCNTs and azobisisobutyronitrile (AIBN) as a radical initiator led to the formation of materials with a high functionalisation degree. The subsequent treatment with sodium borohydride gave rise to the reduction of imidazolium moieties with the concomitant formation of secondary and tertiary amino groups. The obtained materials were characterised by thermogravimetric analysis (TGA), elemental analysis, solid state 13C-NMR, Fourier-transform infrared spectroscopy (FT-IR), transmission ele…
Surface Defects as a Tool to Solubilize and Functionalize WS 2 Nanotubes
2017
Layered transition metal dichalcogenides contain a number of crystal defects which significantly change their properties may be beneficial or detrimental for a specific application. We have prepared defect-rich multiwalled WS2 nanotubes by reductive sulfidization of W18O49 nanowires that were obtained solvothermally from tungsten chloride in different alcohols. The synthesis of the W18O49 nanowires was monitored and their morphological characteristics (e. g. length, rigidity and aspect ratio) are described in detail. The effect of morphology of the nanowires on the synthesis of WS2 nanotubes was investigated in order to obtain WS2 nanotubes that are highly solvent dispersible. Dispersions o…
Processing and characterization of UHMWPE/α-tocopherol-CNTs nanocomposites
2013
Thermo-oxidative resistant UHMWPE-based nanocomposites containing hybrid-nanoparticles based on natural anti-oxidants and carbon nanotubes
2015
The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) were physically immobilized onto multi-walled carbon nanotubes bearing covalently-linked long-chain alkyl ester groups (CNTs) and the resulting hybrids CNTs-VE and CNTs-Q were used to formulate thermo-oxidation stable ultra high molecular weight polyethylene based nanocomposites. The thermo-oxidation of the nanocomposites was performed at 120°C in air oven. The samples were then subjected to FTIR analyses at different annealing times. The accurate analysis of …