Search results for "CET"

showing 10 items of 6679 documents

The Taming of Redox‐Labile Phosphidotitanocene Cations

2019

International audience; Tame d0 phosphidotitanocene cations stabilized with a pendant tertiary phosphane arm are reported. These compounds were obtained by one-electron oxidation of d1 precursors with [Cp2Fe][BPh4]. The electronic structure of these compounds was studied experimentally (EPR, UV/Vis, and NMR spectroscopy, X-ray diffraction analysis) and through DFT calculations. The theoretical analysis of the bonding situation by using the electron localization function (ELF) shows the presence of π-interactions between the phosphido ligand and Ti in the d0 complexes, whereas dπ–pπ repulsion prevents such interactions in the d1 complexes. In addition, CH–π interactions were observed in seve…

010402 general chemistry01 natural sciencesRedoxTransition metal phosphidesCatalysisFrustrated Lewis pairlaw.inventionchemistry.chemical_compoundFrustrated Lewis Pair (FLP)[CHIM.ANAL]Chemical Sciences/Analytical chemistrylaw[CHIM.COOR]Chemical Sciences/Coordination chemistryPhosphorus LigandsElectron paramagnetic resonanceDiphenylacetyleneComputingMilieux_MISCELLANEOUSTitanium[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryLigandOrganic Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryGeneral ChemistryNuclear magnetic resonance spectroscopyElectron localization function0104 chemical sciencesHomolysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryDensity Functional Theory (DFT)Crystallographychemistry[CHIM.CHEM]Chemical Sciences/CheminformaticsChemistry – A European Journal
researchProduct

2,4,5-Triaryl imidazole probes for the selective chromo-fluorogenic detection of Cu(II). Prospective use of the Cu(II) complexes for the optical reco…

2019

The sensing behaviour toward metal cations and biothiols of two 2,4,5-triarylimidazole probes (3a and 3b) is tested in acetonitrile and in acetonitrile-water. In acetonitrile the two probes present charge-transfer absorption bands in the 320-350 nm interval. Among all cations tested only Cu(11) is able to induce bathochromic shifts of the absorption band in the two probes, which is reflected in marked colour changes. Colour modulations are ascribed to the formation of 1:1 Cu(II)-probe complexes in which the cation interacts with the imidazole acceptor heterocycle. Besides, the two probes present intense emission bands (at 404 and 437 nm for 3a and 3b respectively) in acetonitrile that are q…

010402 general chemistryPhotochemistryCu(II) detection01 natural sciencesCu(II) imagingInorganic ChemistryMetalchemistry.chemical_compoundBathochromic shiftMaterials ChemistryImidazolePhysical and Theoretical ChemistryAcetonitrileImidazole-based probesAqueous solutionScience & Technology010405 organic chemistryGSH imagingAcceptor0104 chemical sciences3. Good healthchemistryAbsorption bandvisual_artvisual_art.visual_art_mediumHypsochromic shiftBiothiols recognition
researchProduct

First copper(I) ferrocenyltetraphosphine complexes: possible involvement in Sonogashira cross-coupling reaction ?

2008

Preparation and characterization of the first examples of copper(I) ferrocenylpolyphosphine complexes are reported. The molecular structure of complex {P,P′,P′′-[1,1′,2,2′-tetrakis(diphenylphosphino)-4,4′-di-tert-butylferrocene]iodocopper(I)} (1) was solved by X-ray diffraction studies, and its fluxional behavior in solution was investigated by VT-31P NMR; both revealed a net triligated coordination preference of the ferrocenyl tetraphosphine Fc(P)4tBu with copper. The tetradentate ligand is an active auxiliary in Sonogashira alkynylation; therefore the general question of copper as a competitive coordination partner in the Pd/Cu-catalyzed Sonogashira reaction was raised and discussed. Elec…

010405 organic chemistryArylOrganic Chemistry[ CHIM.COOR ] Chemical Sciences/Coordination chemistrySonogashira couplingchemistry.chemical_element010402 general chemistry01 natural sciencesMedicinal chemistryCopperCoupling reaction0104 chemical sciencesCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryPhenylacetyleneMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSPalladium
researchProduct

2020

The course of organic chemical reactions is efficiently modelled through the concepts of “electrophiles” and “nucleophiles” (meaning electron-seeking and nucleus-seeking reactive species). On the one hand, an advanced approach of the correlation of the nucleophilicity parameters N and electrophilicity E has been delivered from the linear free energy relationship log k (20 °C) = s(N + E). On the other hand, the general influence of the solvent mixtures, which are very often employed in preparative synthetic chemistry, has been poorly explored theoretically and experimentally, to date. Herein, we combined experimental and theoretical studies of the solvent influence on pyrrolidine nucleophili…

010405 organic chemistryChemistryGeneral Chemical EngineeringSolvationGeneral ChemistryFree-energy relationship010402 general chemistry01 natural sciencesPyrrolidine0104 chemical sciencesSolventchemistry.chemical_compoundComputational chemistryNucleophilic substitutionDensity functional theorySolvent effectsAcetonitrileRSC Advances
researchProduct

2015

Biphenols are important structure motifs for ligand systems in organic catalysis and are therefore included in the category of so-called "privileged ligands". We have developed a new synthetic pathway to construct these structures by the use of selenium dioxide, a stable, powerful, and commercially available oxidizer. Our new, and easy to perform protocol gives rise to biphenols and diaryl selenides depending on the solvent employed. Oxidative treatment of phenols in acetic acid yields the corresponding biphenols, whereas conversion in pyridine results in the preferred formation of diaryl selenides. As a consequence, we were able to isolate a broad scope of novel diaryl selenides, which cou…

010405 organic chemistryChemistryLigandchemistry.chemical_elementGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisSolventchemistry.chemical_compoundAcetic acidTransition metalPyridineOrganic chemistryOrganic synthesisSeleniumChemistryOpen
researchProduct

Reactivity of [1,2,3]Triazolo[1,5-a]pyridines as 1,3-dipoles

2016

Abstract We have studied the reactions between [1,2,3]Triazolo[1,5- a ]pyridines 1a,b,c and electron-deficient ethylenes in different conditions. Compounds 1a and 1b react with ethyl propiolate, and dimethyl acetylene dicarboxylate giving a new class of biaryl compounds pyridyl pyrazoles, and with ethyl acrylate giving pyridyl cyclopropanes. Compound 1c did not give any product in the studied conditions. A proposal of mechanism of these reactions is done in which the triazolopyridines act as 1,3-dipoles giving 1,3-dipolar cycloadditions.

010405 organic chemistryChemistryOrganic Chemistry010402 general chemistry01 natural sciencesBiochemistry0104 chemical sciencesEthyl propiolatechemistry.chemical_compoundAcetyleneDrug DiscoveryPolymer chemistryEthyl acrylateReactivity (chemistry)Tetrahedron
researchProduct

Synthesis of substituted piperidines by enantioselective desymmetrizing intramolecular aza-Michael reactions.

2018

An organocatalytic enantioselective intramolecular aza-Michael reaction has been described for the first time in a desymmetrization process employing substrates different from cyclohexadienones. By using 9-amino-9-deoxy-epi-hydroquinine as the catalyst and trifluoroacetic acid as a co-catalyst, a series of enantiomerically enriched 2,5-and 2,6-disubstituted piperidines have been obtained in good yields and with moderate diastereoselectivity. Depending on the catalyst/co-catalyst loading ratio, either the major or the minor diastereoisomer of the final piperidine products was achieved with high levels of enantioselectivity. Finally, some mechanistic insights have been considered by means of …

010405 organic chemistryChemistryOrganic ChemistryEnantioselective synthesisDiastereomer010402 general chemistry01 natural sciencesBiochemistryDesymmetrization0104 chemical sciencesCatalysischemistry.chemical_compoundLoading ratioIntramolecular forceTrifluoroacetic acidOrganic chemistryPiperidinePhysical and Theoretical ChemistryOrganicbiomolecular chemistry
researchProduct

A Strongly Luminescent Chromium(III) Complex Acid

2018

The synthesis, structure, reactivity, and photophysical properties of a novel acidic, luminescent chromium(III) complex [Cr(H2 tpda)2 ]3+ (23+ ) bearing the tridentate H2 tpda (2,6-bis(2-pyridylamino)pyridine) ligand are presented. Excitation of 23+ at 442 nm results in strong, long-lived NIR luminescence at 782 nm in water and in acetonitrile. X-ray diffraction analysis and IR spectroscopy reveal hydrogen-bonding interactions of the counter ions to the NH groups of 23+ in the solid state. Deprotonation of the NH groups of 23+ by using a non-nucleophilic Schwesinger base in CH3 CN switches off the luminescence. Re-protonation by using HClO4 restores the emission. In water, the pKa value of …

010405 organic chemistryChemistryOrganic ChemistryQuantum yieldInfrared spectroscopychemistry.chemical_elementGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundChromiumDeprotonationPyridineHydroxideLuminescenceAcetonitrileChemistry - A European Journal
researchProduct

Protonation and Electrochemical Properties of Pyridyl- and Sulfonatophenyl-Substituted Porphyrins in Nonaqueous Media

2017

International audience; The protonation and electrochemical properties of positively charged and negatively charged porphyrins are reported in up to five different nonaqueous solvents. The positively charged porphyrins are represented by mono- and di-pyridyl derivatives having the formula Pyx(PhMe)4-xPM, where P=the dianion of the porphyrin macrocycle, PhMe is a meso-tolyl group, Py a meso-pyridyl group, x=1 or 2, and M=H2, NiII, CuII, ZnII, or CoII. The negatively charged porphyrins are comprised of meso-tetrasulfonato derivatives having the formula [(R)4(TPPS)H2]4−(X+)4, where [(TPPS)H2]4− represents the porphyrin with four SO3− groups on the meso-phenyl substituents of the macrocycle, R=…

010405 organic chemistryChemistryProtonation010402 general chemistryPhotochemistryElectrochemistry[ CHIM ] Chemical Sciences01 natural sciencesMedicinal chemistryPorphyrinRedoxCatalysis0104 chemical sciencesSolventchemistry.chemical_compoundPEG ratioElectrochemistryTrifluoroacetic acid[CHIM]Chemical SciencesTitrationChemElectroChem
researchProduct

Copper(I)-catalysed regioselective synthesis of pyrazolo[5,1-c]-1,2,4-triazoles: A DFT mechanistic study

2017

Abstract Formation of pyrazolo[5,1-c]-1,2,4-triazoles by means of Cu(I)-catalysed [3+2] cycloaddition (32CA) reactions of C,N-cyclic azomethine imines with phenylacetylene, experimentally reported by Katritzky et al. (JOC 2012, 77, 5813), was studied using the density functional theory (DFT) method. Comparison with the uncatalysed 32CA reaction indicates that the Cu(I) catalyst provides new reaction pathways with lower electronic energy barriers in dichloromethane as solvent. The mechanism proposed by Katritzky for the Cu(I) catalysed reaction is compared with that proposed by Sharpless et al. (JACS 127, 2005, 210). The major difference between these two mechanisms lies in the coordination …

010405 organic chemistryChemistryStereochemistryAcetylideOrganic ChemistryImineRegioselectivity010402 general chemistry01 natural sciencesBiochemistryMedicinal chemistryCycloaddition0104 chemical sciencesCatalysischemistry.chemical_compoundPhenylacetyleneDrug DiscoveryMoietyDensity functional theoryTetrahedron
researchProduct